Dielectrophoretic force microscopy is shown to allow for facile noncontact imaging of systems in aqueous media. Electrokinetic tip-sample forces were predicted from topography measurements of an interface and compared with experimental images. Correlation function and power spectral density analyses indicated that image feedback was maintained without mechanical contact using moderate potentials (e.g., approximately 18 nm off the surface for a 7-Vpp, 100-kHz waveform). The applied dielectrophoretic force and the corresponding increase in effective tip radius were predictably adjusted by changing the peak potential.
Dielectrophoretic force microscopy (DEPFM) and spectroscopy have been performed on individual intact surface-immobilized mammalian red blood cells. Dielectrophoretic force spectra were obtained in situ in approximately 125 ms and could be acquired over a region comparable in dimension to the effective diameter of a scanning probe microscopy tip. Good agreement was observed between the measured dielectrophoretic spectra and predictions using a single-shell cell model. In addition to allowing for highly localized dielectric characterization, DEPFM provided a simple means for noncontact imaging of mammalian blood cells under aqueous conditions. These studies demonstrate the feasibility of using DEPFM to monitor localized changes in membrane capacitance in real time with high spatial resolution on immobilized cells, complementing previous studies of mobile whole cells and cell suspensions.
A novel scanning probe microscopy technique has allowed dielectrophoretic force imaging with nanoscale spatial resolution. Dielectrophoresis (DEP) traditionally describes the mobility of polarizable particles in inhomogeneous alternating current (ac) electric fields. Integrating DEP with atomic force microscopy allows for noncontact imaging with the image contrast related to the local electric polarizability. By tuning the ac frequency, dielectric spectroscopy can be performed at solid/liquid interfaces with high spatial resolution. In studies of cells, the frequency-dependent dielectrophoretic force is sensitive to biologically relevant electrical properties, including local membrane capacitance and ion mobility. Consequently, dielectrophoretic force microscopy is well suited for in vitro noncontact scanning probe microscopy of biological systems.
A new mechanism for direct-write surface scanning probe lithography is considered based on electrodynamic cavitation in a true liquid environment. Oxide layers grown on Si∕SiO2∕H2O and Si∕SiO2∕Au∕H2O interfaces reached maximum heights of 130 and 690nm, respectively. These structures represent a full order of magnitude increase in height over oxides grown in air under similar voltages and time durations, suggesting a unique reaction mechanism. Time-dependent studies indicated that oxide structures generated in water grew by discrete intervals and occasionally grew at a significant distance from the tip, effects that have not been previously reported. The possibility of electrodynamic cavitation-assisting silicon oxide growth under aqueous conditions is considered, potentially opening up opportunities for formation of nanoscale surface structures based on largely underutilized cavitation-induced (e.g., sonochemical) reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.