HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In this paper, we analyse four different heuristics for qualified worker selection for machines in discrete event simulation. Conventional simulators simply select a capable worker randomly or from the top-of-the-stack (TOS) of candidates that are qualified to operate a machine, without considering the impact of removing that worker from the current available qualification pool (qPool). To investigate the efficacy of this approach, we compare these random and TOS approaches with two other worker selection rules: least number of qualifications (LENQ), and a heuristic that selects a worker with the lowest impact factor on the qualification pool (LIMP). LIMP ranks workers based on their contribution to the qPool and the constrainedness of each of their qualifications. We apply LENQ to a simulation model of a real company, and compared with the Random heuristic we observe a 44% reduction in the qualification resource constraint metric (RCM q ) and a 2% reduction in the total lateness in sales-order satisfaction. For the LIMP heuristic, the RCM q reduction is 77%. However, LIMP yields no significant improvement in sales-order lateness over the simpler LENQ approach. The LENQ and LIMP heuristics also have the benefit of more closely modelling what happens in reality, as they are based on intuition that would be used in practice, rather than using a random or simple TOS approach followed in conventional simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.