There is an emerging need for practical methods that can produce organized arrays of nanomaterials with high throughput. Particle lithography provides such an approach for rapidly preparing millions of exquisitely uniform nanometer-sized structures on flat surfaces, using basic steps of bench chemistry. Structural templates of monodisperse latex or silica mesospheres can guide the deposition of nanoparticles to generate 2D arrays of nanopatterns with control of the surface coverage, size, and periodicity of nanoparticle structures.
Advanced surface characterization techniques were used to systematically investigate either the corrosion or passivation of copper after immersion in water as impacted by pH and orthophosphate water chemistries. Atomic force microscopy, depth profiling with time-of-flight secondary ion mass spectrometry, and X-ray diffraction were used to evaluate changes in surface chemistry of copper surfaces resulting from various chemical treatments. Nanoscale differences in surface morphology are clearly evident after 6 and 24 h immersion in water samples. Orthophosphate and pH dramatically influence the evolution and progression of changes during surface corrosion. For example, in the absence of orthophosphate the surface of copper exposed to water at pH 6 had formed relatively large cubic crystals on the surface up to 400 nm in height. In the presence of orthophosphate, the morphology and growth rate of corrosion byproduct changed dramatically, and the formation of identifiable crystals diminished. These investigations provide insight into the mechanisms of surface passivation and the evolution of nanoscale mineral deposits on surfaces at very early stages of the corrosion of copper surfaces in water.
Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs.
A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.