Some 50% of human cancers are associated with mutations in the core domain of the tumor suppressor p53. Many mutations are thought just to destabilize the protein. To assess this and the possibility of rescue, we have set up a system to analyze the stability of the core domain and its mutants. The use of differential scanning calorimetry or spectroscopy to measure its melting temperature leads to irreversible denaturation and aggregation and so is useful as only a qualitative guide to stability. There are excellent two-state denaturation curves on the addition of urea that may be analyzed quantitatively. One Zn 2؉ ion remains tightly bound in the holo-form of p53 throughout the denaturation curve. The stability of wild type is 6.0 kcal (1 kcal ؍ 4.18 kJ)͞mol at 25°C and 9.8 kcal͞mol at 10°C. The oncogenic mutants R175H, C242S, R248Q, R249S, and R273H are destabilized by 3.0, 2.9, 1.9, 1.9, and 0.4 kcal͞mol, respectively. Under certain denaturing conditions, the wildtype domain forms an aggregate that is relatively highly f luorescent at 340 nm on excitation at 280 nm. The destabilized mutants give this f luorescence under milder denaturation conditions.The tumor suppressor protein p53 is a sequence-specific transcription factor that functions to maintain the integrity of the genome (1). On its induction in response to DNA damage, p53 promotes cell cycle arrest in G 1 phase (2) and apoptosis if DNA repair is not possible (3). Negative regulation occurs by the synthesis and subsequent binding of the oncoprotein Mdm2 to the transactivation domain of p53. This targets it for degradation and ensures that the cellular stability of p53 is low (4, 5). About 50% of human cancers and 95% of lung cancers are associated with mutations in p53. The majority of these map to its core domain, which is responsible for binding DNA (6). The crystal structure of the core domain bound to DNA has been determined (7). A number of the tumorigenic mutants affect residues that contact the DNA, but many are not directly involved in binding and appear to affect the thermodynamic stability of the protein (8, 9). p53 is a possible target for cancer therapy, including drugs that can stabilize it or using superstable p53 variants that would be suitable for gene therapy applications. There is a lack of quantitative information on the stability of p53 on which to base experiments measuring its change in stability on mutation. Data tend to be restricted so far to measurements of the temperature dependence of transactivation or PAb 1620 binding (8, 9), a monoclonal antibody specific for the native state of wild-type p53 (10). These suggest that p53 is relatively unstable. We find in this study that the core domain denatures irreversibly with temperature, and so the T m measured by differential scanning calorimetry or spectroscopy cannot be used quantitatively for analyzing structure-activity relationships of p53. We have turned instead to studying the stability of the isolated core domain by using urea-mediated denaturation, which is of p...
Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structures of wild-type and mutant p53 core domains in solution by NMR spectroscopy. Structural changes introduced by five hot-spot mutations (V143A, G245S, R248Q, R249S, and R273H) were monitored by chemical-shift changes. Only localized changes are observed for G245S, R248Q, R249S, and R273H, suggesting that the overall tertiary folds of these mutant proteins are similar to that of wild type. Structural changes in R273H are found mainly in the loop-sheet-helix motif and the loop L3 of the core domain. Mutations in L3 (G245S, R248Q, and R249S) introduce structural changes in the loop L2 and L3 as well as terminal residues of strands 4, 9, and 10. It is noteworthy that R248Q, which is often regarded as a contact mutant that affects only interactions with DNA, introduces structural changes as extensive as the other loop L3 mutations (G245S and R249S). These changes suggest that R248Q is also a structural mutant that perturbs the structure of loop L2-L3 regions of the p53 core domain. In contrast to other mutants, replacement of the core residue valine 143 to alanine causes chemical-shift changes in almost all residues in the -sandwich and the DNA-binding surface. Long-range effects of V143A mutation may affect the specificity of DNA binding.
The core domain of p53 is extremely susceptible to mutations that lead to loss of function. We analysed the stability and DNA-binding activity of such mutants to understand the mechanism of second-site suppressor mutations. Double-mutant cycles show that N239Y and N268D act as 'global stability' suppressors by increasing the stability of the cancer mutants G245S and V143A-the free energy changes are additive. Conversely, the suppressor H168R is specific for the R249S mutation: despite destabilizing wild type, H168R has virtually no effect on the stability of R249S, but restores its binding affinity for the gadd45 promoter. NMR structural comparisons of R249S/H168R and R249S/T123A/H168R with wild type and R249S show that H168R reverts some of the structural changes induced by R249S. These results have implications for possible drug therapy to restore the function of tumorigenic mutants of p53: the function of mutants such as V143A and G245S is theoretically possible to restore by small molecules that simply bind to and hence stabilize the native structure, whereas R249S requires alteration of its mutant native structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.