In this paper, the details of RT3D, a general purpose, multispecies, reactive transport code, are presented. The code uses MODFLOW to simulate flow and several MT3D sub‐programs to simulate advection and dispersion. A set of reaction modules were developed and incorporated into RT3D to simulate various types of multispecies reactive transport. This new computer model can be used for analyzing different types of subsurface contaminant reactions, microbial metabolisms, and microbial transport kinetics. Details of the model and numerical solution procedure are presented. The numerical formulation of the code is general enough to allow description of any type of reaction with any number of mobile/immobile species. Several example problems are presented to test the performance of the code, and to illustrate its features. The presented numerical model is shown to be a useful tool for analyzing different types of subsurface bioremediation systems. Prediction based on this model can be used for screening remediation alternatives including natural attenuation and/or for forecasting contaminant exposure levels and environmental risks at sensitive, downgradient receptors.
Analytical equations are developed to model changes in porosity, specific surface area, and permeability caused by biomass accumulation in porous media. The proposed equations do not assume any specific pattern for microbial growth but instead are based on macroscopic estimates of average biomass concentrations. For porous media with a pore‐size distribution index value (λ) equal to 3, the macroscopic model predictions of porosity, specific surface area, and permeability changes are in exact agreement with biofilm‐model predictions. At other values of λ between 2 and 5, simulated porosity profiles are identical and relative specific surface area and permeability profiles show minor deviations. In comparison to biofilm‐based models, the macroscopic models are relatively simple to implement and are computationally more efficient. Simulations of biologically reactive flow in a one‐dimensional column show that the macroscopic and biofilm approach based transport codes predict almost identical porosity and permeability profiles. The macroscopic models are simple and useful tools for estimating changes in various porous media properties during bioremediation of contaminated aquifers.
An attempt was made to obtain a high-level production of intact Acidothermus cellulolyticus endoglucanase (E1) in transgenic tobacco plants. The E1 expression was examined under the control of the constitutive and strong Mac promoter or light-inducible tomato Rubisco small sub-unit (RbcS-3C) promoter with its original or Alfalfa Mosaic Virus (AMV) RNA4 5'-untranslated leader (UTL) and targeted to different sub-cellular compartments via transit peptides. The transit peptides included native E1, endoplasmic reticulum, vacuole, apoplast, and chloroplast. E1 expression and its stability in transgenic plants were determined via E1 activity, protein immunoblotting, and RNA gel-blotting analyses. Effects of sub-cellular compartments on E1 production and its stability were determined in transgenic tobacco plants carrying one of six transgene expression vectors, where the E1 was under the control of Mac promoter, mannopine synthase transcription terminator, and one of the five transit peptides. Transgenic tobacco plants with an apoplastic transit peptide had the highest average E1 activity and protein accumulation, which was about 0.25% of total leaf soluble proteins estimated via E1 specific activity and protein gel blots. Intercellular fluid analyses confirmed that E1 signal peptide functioned properly in tobacco cells to secret E1 protein into the apoplast. By replacing RbcS-3C UTL with AMV RNA4 UTL E1 production was enhanced more than twofold, while it was less effective than the mannopine synthase UTL. It was observed that RbcS-3C promoter was more favorable for E1 expression in transgenic plants than the Mac promoter. E1 activity in dried tobacco seeds stored one year at room temperature was 45% higher than that observed immediately after harvesting, suggesting that E1 protein can be stored at room temperature for a long period. E1 stability in different sub-cellular compartments and the optimal combination of promoter, 5'-UTL, and sub-cellular compartmentation for heterologous protein production in transgenic plants are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.