A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.
Portions published previously in: Julian R. R.; Hodyss R.; Kinnear B.; Jarrold M. F.;Beauchamp J. L.
The conformations of unsolvated Ac-K(AGG)(5)+H(+) and Ac-(AGG)(5)K+H(+) peptides (Ac = acetyl, A = alanine, G = glycine, and K = lysine) have been examined by ion mobility measurements over a wide temperature range (150-410 K). The Ac-K(AGG)(5)+H(+) peptide remains a globule (a compact, roughly spherical structure) over the entire temperature range, while both an alpha-helix and a globule are found for Ac-(AGG)(5)K+H(+) at low temperature. As the temperature is raised the alpha-helix unfolds. Rate constants for loss of the helix (on a millisecond time scale) have been determined as a function of temperature and yield an Arrhenius activation energy and preexponential factor of 38.2 +/- 1.0 kJ mol(-1) and 6.5 +/- 3.7 x 10(9) s(-1), respectively. The alpha-helix apparently does not unfold directly into the globule, but first converts into a long-lived intermediate which survives to a significantly higher temperature before converting. According to molecular dynamics simulations, there is a partially untwisted helical conformation that has both a low energy and a well-defined geometry. This special structure lies between the helix and globule and may be the long-lived intermediate.
High-resolution ion mobility measurements and molecular dynamics (MD) simulations have been used to study the conformations of unsolvated valine-based peptides with up to 20 residues. In aqueous solution, valine is known to have a high propensity to form β-sheets and a low propensity to form α-helices. A variety of protonated valine-based peptides were examined in vacuo: Val n +H+, Ac-Val n -Lys+H+, Ac-Lys-Val n +H+, Val n -Gly-Gly-Val m +H+, Val n -LPro-Gly-Val m +H+, Val n -DPro-Gly-Val m +H+, Ac-Val n -Gly-Lys-Val m +H+, Ac-Val n +H+, and Arg-Val n +H+. Peptides designed to be β-hairpins were found to be random globules or helices. The β-hairpin is apparently not favored for valine-based peptides in vacuo, which is in agreement with the predictions of MD simulations. Peptides designed to be α-helices appear to be partial α/partial π-helices. Insertion of Gly-Gly, LPro-Gly, or DPro-Gly into the center of a polyvaline peptide disrupts helix formation. Some of the peptides that were expected to be random globules (because their most basic protonation site is near the N-terminus where protonation destabilizes the helix) were found to be helical with the proton located near the C-terminus. Helix formation appears to be more favorable in unsolvated valine-based peptides than in their alanine analogues. This is the reverse of what is observed in aqueous solution, but appears to parallel the helix propensities determined in polar solvents.
Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on the other hand is designed to have a flat energy landscape with a marginally stable helical state. This peptide shows at least four different conformations at low temperatures (<230 K). The two conformations with the largest cross sections are attributed to - and partial -helices, while the one with the smallest cross section is globular. The other main conformation may be partially helical. Ac-A4G7A4 + H+ becomes predominantly globular at intermediate temperatures and then becomes more helical as the temperature is raised further. This unexpected behavior may be due to the helix having a higher vibrational entropy than the globular state, as predicted by some recent calculations (Ma, B.; Tsai, C.-J.; Nussinov, R. Biophys. J. 2000, 79, 2739-2753).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.