We determined the effect of pelvic organ decentralization and reinnervation one year later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7 and hypogastric nerves. After exclusions, 8 were reinnervated 12 months post-decentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 months later; four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1-S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher, compared to decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1-L6 roots, compared to their transected L7-S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at one year after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function.
Aims:We sought to determine whether somatic lumbar nerve transfer to the pelvic nerve's anterior vesical branch after sacral decentralization for detrusor muscle reinnervation also leads to aberrant innervation of the bladder outlet. Methods: Twenty-six female mongrel hound dogs underwent transection of sacral dorsal and ventral spinal roots (ie, sacral decentralization). Immediately afterward, 12 received genitofemoral nerve transfer and 9 received femoral nerve branch transfer. Five were left sacrally decentralized. Controls included 3 sham-operated and 6 unoperated. Eight months postsurgery, the bladder and urethra were injected with retrograde tracing dyes cystoscopically. After 3 weeks, detrusor and urethral pressures were assayed electrophysiologically immediately before euthanasia and characterization of neural reinnervation. Results: Electrical stimulation of spinal cords or roots did not lead to increased urethral sphincter pressure in nerve transfer animals, compared with decentralized animals, confirming a lack of functional reinnervation of the bladder outlet. In contrast, mean detrusor pressure increased after lumbar cord/root stimulation. In sham/unoperated animals, urethral and bladder dye injections resulted in labeled neurons in sacral level neural structures (dorsal root ganglia [DRG], sympathetic trunk ganglia [STG], and spinal cord ventral horns); labeling absent in decentralized animals. Urethral dye injections did not result in labeling in lumbar or sacral level neural structures in either nerve transfer group while bladder dye injections lead to increased labeled neurons in lumbar level DRG, STG, and ventral horns, compared to sacrally decentralized animals. Conclusion: Pelvic nerve transfer for bladder reinnervation does not impact urethral sphincter innervation.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
OBJECTIVE Bladder dysfunction after nerve injury has a variable presentation, and extent of injury determines whether the bladder is spastic or atonic. The authors have proposed a series of 3 nerve transfers for functional innervation of the detrusor muscle and external urethral sphincter, along with sensory innervation to the genital dermatome. These transfers are applicable to only cases with low spinal segment injuries (sacral nerve root function is lost) and largely preserved lumbar function. Transfer of the posterior branch of the obturator nerve to the vesical branch of the pelvic nerve provides a feasible mechanism for patients to initiate detrusor contraction by thigh adduction. External urethra innervation (motor and sensory) may be accomplished by transfer of the vastus medialis nerve to the pudendal nerve. The sensory component of the pudendal nerve to the genitalia may be further enhanced by transfer of the saphenous nerve (sensory) to the pudendal nerve. The main limitations of coapting the nerve donors to their intrapelvic targets are the bifurcation or arborization points of the parent nerve. To ensure that the donor nerves had sufficient length and diameter, the authors sought to measure these parameters. METHODS Twenty-six pelvic and anterior thigh regions were dissected in 13 female cadavers. After the graft and donor sites were clearly exposed and the branches identified, the donor nerves were cut at suitable distal sites and then moved into the pelvis for tensionless anastomosis. Diameters were measured with calipers. RESULTS The obturator nerve was bifurcated a mean ± SD (range) of 5.5 ± 1.7 (2.0–9.0) cm proximal to the entrance of the obturator foramen. In every cadaver, the authors were able to bring the posterior division of the obturator nerve to the vesical branch of the pelvic nerve (located internal to the ischial spine) in a tensionless manner with an excess obturator nerve length of 2.0 ± 1.2 (0.0–5.0) cm. The distance between the femoral nerve arborization and the anterior superior iliac spine was 9.3 ± 1.8 (6.5–15.0) cm, and the distance from the femoral arborization to the ischial spine was 12.9 ± 1.4 (10.0–16.0) cm. Diameters were similar between donor and recipient nerves. CONCLUSIONS The chosen donor nerves were long enough and of sufficient caliber for the proposed nerve transfers and tensionless anastomosis.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.