Plant extinction risks in the Cape, South Africa differ from those for
vertebrates worldwide, with young and fast-evolving plant lineages marching
towards extinction at the fastest rate, but independently of human effects.
Rhizobial diversity and host preferences were assessed in 65 native Fynbos legumes of the papilionoid legume tribes Astragaleae, Crotalarieae, Genisteae, Indigofereae, Millettieae, Phaseoleae, Podalyrieae, Psoraleeae and Sesbanieae. Sequence analyses of chromosomal 16S rRNA, recA, atpD and symbiosis-related nodA, nifH genes in parallel with immunogold labelling assays identified the symbionts as alpha- (Azorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) and beta-rhizobial (Burkholderia) lineages with the majority placed in the genera Mesorhizobium and Burkholderia showing a wide range of host interactions. Despite a degree of symbiotic promiscuity in the tribes Crotalarieae and Indigofereae nodulating with both alpha- and beta-rhizobia, Mesorhizobium symbionts appeared to exhibit a general host preference for the tribe Psoraleeae, whereas Burkholderia prevailed in the Podalyrieae. Although host genotype was the main factor determining rhizobial diversity, ecological factors such as soil acidity and site elevation were positively correlated with genetic variation within Mesorhizobium and Burkholderia, respectively, indicating an interplay of host and environmental factors on the distribution of Fynbos rhizobia.
This analysis goes beyond many phylogenies in exploring how phylogenetic structure imposed by morphology, ecology, and geography reveals useful evolutionary data. A comprehensive range of such diversity is evaluated within tribe Indigofereae and outgroups from sister tribes. A combined data set of 321 taxa (over one-third of the tribe) by 80 morphological characters, 833 aligned nuclear ribosomal ITS/5.8S sites, and an indel data set of 33 characters was subjected to parsimony analysis. Notable results include the Madagascan dry forest Disynstemon resolved as sister to tribe Indigofereae, and all species of the large genus Indigofera comprise just four main clades, each diagnosable by morphological synapomorphies and ecological and geographical predilections. These results suggest niche conservation (ecology) and dispersal limitation (geography) are important processes rendering signature shapes to the Indigofereae phylogeny in different biomes. Clades confined to temperate and succulent-rich biomes are more dispersal limited and have more geographical phylogenetic structure than those inhabiting tropical grass-rich vegetation. The African arid corridor, particularly the Namib center of endemism, harbors many of the oldest Indigofera lineages. A rates analysis of nucleotide substitutions confirms that the ages of the oldest crown clades are mostly younger than 16 Ma, implicating dispersal in explaining the worldwide distribution of the tribe.
(2013). Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon, 62(2):217-248.
LPWG • Legume phylogeny and classificationTAXON 62 (2) •
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.