The discovery and optimization of a new class of bacterial topoisomerase (DNA gyrase and topoisomerase IV) inhibitors binding in the ATP domain are described. A fragment molecule, 1-ethyl-3-(2-pyridyl)urea, provided sufficiently potent enzyme inhibition (32 μM) to prompt further analogue work. Acids and acid isosteres were incorporated at the 5-pyridyl position of this fragment, bridging to a key asparagine residue, improving enzyme inhibition, and leading to measurable antibacterial activity. A CF3-thiazole substituent at the 4-pyridyl position improved inhibitory potency due to a favorable lipophilic interaction. Promising antibacterial activity was seen versus the Gram-positive pathogens Staphylococcus aureus and Streptococcus pneumoniae and the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis . Precursor metabolite incorporation and mutant analysis studies support the mode-of-action, blockage of DNA synthesis by dual target topoisomerase inhibition. Compound 35 was efficacious in a mouse S. aureus disease model, where a 4.5-log reduction in colony forming units versus control was demonstrated.
DNA gyrase is an essential enzyme in bacteria, and its inhibition results in the disruption of DNA synthesis and, subsequently, cell death. The pyrrolamides are a novel class of antibacterial agents targeting DNA gyrase. These compounds were identified by a fragment-based lead generation (FBLG) approach using nuclear magnetic resonance (NMR) screening to identify low-molecular-weight compounds that bind to the ATP pocket of DNA gyrase. A pyrrole hit with a binding constant of 1 mM formed the basis of the design and synthesis of a focused library of compounds that resulted in the rapid identification of a lead compound that inhibited DNA gyrase with a 50% inhibitory concentration (IC(50)) of 3 μM. The potency of the lead compound was further optimized by utilizing iterative X-ray crystallography to yield DNA gyrase inhibitors that also displayed antibacterial activity. Spontaneous mutants were isolated in Staphylococcus aureus by plating on agar plates containing pyrrolamide 4 at the MIC. The resistant variants displayed 4- to 8-fold-increased MIC values relative to the parent strain. DNA sequencing revealed two independent point mutations in the pyrrolamide binding region of the gyrB genes from these variants, supporting the hypothesis that the mode of action of these compounds was inhibition of DNA gyrase. Efficacy of a representative pyrrolamide was demonstrated against Streptococcus pneumoniae in a mouse lung infection model. These data demonstrate that the pyrrolamides are a novel class of DNA gyrase inhibitors with the potential to deliver future antibacterial agents targeting multiple clinical indications.
Bruton’s
tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent
role in the treatment of B cell malignancies. However, further refinement
is needed to this class of agents, particularly in terms of adverse
events (potentially driven by kinase promiscuity), which preclude
their evaluation in nononcology indications. Here, we report the discovery
and preclinical characterization of evobrutinib, a potent, obligate
covalent inhibitor with high kinase selectivity. Evobrutinib displayed
sufficient preclinical pharmacokinetic and pharmacodynamic characteristics
which allowed for in vivo evaluation in efficacy models. Moreover,
the high selectivity of evobrutinib for BTK over epidermal growth
factor receptor and other Tec family kinases suggested a low potential
for off-target related adverse effects. Clinical investigation of
evobrutinib is ongoing in several autoimmune diseases, including multiple
sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.
AZD5099 (compound 63) is an antibacterial agent that entered phase 1 clinical trials targeting infections caused by Gram-positive and fastidious Gram-negative bacteria. It was derived from previously reported pyrrolamide antibacterials and a fragment-based approach targeting the ATP binding site of bacterial type II topoisomerases. The program described herein varied a 3-piperidine substituent and incorporated 4-thiazole substituents that form a seven-membered ring intramolecular hydrogen bond with a 5-position carboxylic acid. Improved antibacterial activity and lower in vivo clearances were achieved. The lower clearances were attributed, in part, to reduced recognition by the multidrug resistant transporter Mrp2. Compound 63 showed notable efficacy in a mouse neutropenic Staphylococcus aureus infection model. Resistance frequency versus the drug was low, and reports of clinical resistance due to alteration of the target are few. Hence, 63 could offer a novel treatment for serious issues of resistance to currently used antibacterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.