There is a critical need for understanding the progression of neuropathology in blast-induced traumatic brain injury using valid animal models to develop diagnostic approaches. In the present study, we used diffusion imaging and magnetic resonance (MR) morphometry to characterize axonal injury in white matter structures of the rat brain following a blast applied via blast tube to one side of the brain. Diffusion tensor imaging was performed on acute and subacute phases of pathology from which fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated for corpus callosum (CC), cingulum bundle, and fimbria. Ventricular volume and CC thickness were measured. Blast-injured rats showed temporally varying bilateral changes in diffusion metrics indicating persistent axonal pathology. Diffusion changes in the CC suggested vasogenic edema secondary to axonal injury in the acute phase. Axonal pathology persisted in the subacute phase marked by cytotoxic edema and demyelination which was confirmed by ultrastructural analysis. The evolution of pathology followed a different pattern in the cingulum bundle: axonal injury and demyelination in the acute phase followed by cytotoxic edema in the subacute phase. Spatially, structures close to midline were most affected. Changes in the genu were greater than in the body and splenium; the caudal cingulum bundle was more affected than the rostral cingulum. Thinning of CC and ventriculomegaly were greater only in the acute phase. Our results reveal the persistent nature of blast-induced axonal pathology and suggest that diffusion imaging may have potential for detecting the temporal evolution of blast injury.
Internal jugular vein (IJV) compression has been shown to reduce axonal injury in pre-clinical traumatic brain injury (TBI) models and clinical concussion studies. However, this novel approach to prophylactically mitigating TBI through venous congestion raises concerns of increasing the propensity for hemorrhage and hemorrhagic propagation. This study aims to test the safety of IJV compression in a large animal controlled cortical impact (CCI) injury model and the resultant effects on hemorrhage. Twelve swine were randomized to placement of a bilateral IJV compression collar (CCI+collar) or control/no collar (CCI) prior to CCI injury. A histological grading of the extent of hemorrhage, both subarachnoid (SAH) and intraparenchymal (IPH), was conducted in a blinded manner by two neuropathologists. Other various measures of TBI histology were also analyzed including: β-amyloid precursor protein (β-APP) expression, presence of degenerating neurons, extent of cerebral edema, and inflammatory infiltrates. Euthanized 5 h after injury, the CCI+collar animals exhibited a significant reduction in total SAH (p = 0.024-0.026) and IPH scores (p = 0.03-0.05) compared with the CCI animals. There was no statistically significant difference in scoring for the other markers of TBI (β-APP, neuronal degeneration, cerebral edema, or inflammatory infiltration). In conclusion, IJV compression was shown to reduce hemorrhage (SAH and IPH) in the porcine CCI model when applied prior to injury. These results suggest the role of IJV compression for mitigation of not only axonal, but also hemorrhagic injury following TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.