Mitochondrial metabolic reprogramming is a hallmark of tumorigenesis. Although mitochondrial function can impact cell cycle regulation it has been an understudied area in cancer research. Our study highlights a specific involvement of mitochondria in cell cycle regulation across cancer types. The mitochondrial fission process, which is regulated at the core by Drp1, impacts various cellular functions. Drp1 has been implicated in various cancer types with no common mechanism reported. Our Drp1-directed large-scale analyses of the publically available cancer genomes reveal a robust correlation of Drp1 with cell-cycle genes in 29 of the 31 cancer types examined. Hypothesis driven investigation on epithelial ovarian cancer (EOC) revealed that Drp1 co-expresses specifically with the cell-cycle module responsible for mitotic transition. Repression of Drp1 in EOC cells can specifically attenuate mitotic transition, establishing a potential casual role of Drp1 in mitotic transition. Interestingly, Drp1-Cell-Cycle co-expression module is specifically detected in primary epithelial ovarian tumors that robustly responded to chemotherapy, suggesting that Drp1 driven mitosis may underlie chemo-sensitivity of the primary tumors. Analyses of matched primary and relapsed EOC samples revealed a Drp1-based-gene-expression-signature that could identify patients with poor survival probabilities from their primary tumors. Our results imply that around 60% of platinum-sensitive EOC patients undergoing relapse show poor survival, potentially due to further activation of a mitochondria driven cell-cycle regime in their recurrent disease. We speculate that this patient group could possibly benefit from mitochondria directed therapies that are being currently evaluated at various levels, thus enabling targeted or personalized therapy based cancer management.
Steady-state mitochondrial structure or morphology is primarily maintained by a balance of opposing fission and fusion events between individual mitochondria, which is collectively referred to as mitochondrial dynamics. The details of the bidirectional relationship between the status of mitochondrial dynamics (structure) and energetics (function) require methods to integrate these mitochondrial aspects. To study the quantitative relationship between the status of mitochondrial dynamics (fission, fusion, matrix continuity and diameter) and energetics (ATP and redox), we have developed an analytical approach called mito-SinCe 2. After validating and providing proof of principle, we applied mito-SinCe 2 on ovarian tumor-initiating cells (ovTICs). Mito-SinCe 2 analyses led to the hypothesis that mitochondria-dependent ovTICs interconvert between three states, that have distinct relationships between mitochondrial energetics and dynamics. Interestingly, fusion and ATP increase linearly with each other only once a certain level of fusion is attained. Moreover, mitochondrial dynamics status changes linearly with ATP or with redox, but not simultaneously with both. Furthermore, mito-SinCe 2 analyses can potentially predict new quantitative features of the opposing fission versus fusion relationship and classify cells into functional classes based on their mito-SinCe 2 states. This article has an associated First Person interview with the first author of the paper.
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks'; level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Various stem cells have been found to be dependent on mitochondrial energetics. The role of mitochondria in regulating the self-renewal of normal stem cells and stem-like tumor initiating cells (TICs) is increasingly being appreciated. We proposed that TIC populations have a sub population of cells that are "primed" by mitochondria for self-renewal. Using ovarian cancer model, we have developed a protocol to identify and isolate these "primed" cells using Fluorescence-Assisted Cell Sorting (FACS). We combined live cell stains for a functional marker of TICs and for mitochondrial transmembrane potential to enrich TICs with higher mitochondrial potential that form in vitro spheroids 10-fold more than the other TICs with lower mitochondrial potential. This protocol can be directly used or modified to be used in various cell types. Thus, this protocol is anticipated to be invaluable for the basic understanding of mitochondrial and energetic heterogeneity within stem cell population, and may also prove valuable in translational studies in regenerative medicine and cancer biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.