We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/ submillimeter Array at 0.87 mm at a resolution of ∼0 1 (40 au), including observations with the Very Large Array at 9mm toward 148 protostars at a resolution of ∼0 08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are -+ 44.9 3.4 5.8 , -+ 37.0 3.0 4.9 , and -+ 28.5 2.3 3.7 au, respectively, and the mean protostellar dust disk masses are 25.9 -+ 4.0 7.7 , -+ 14.9 2.2 3.8 , -+11.6 1.93.5 Å M , respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
The primary goal of this paper is to make a direct comparison between the measured and modelpredicted abundances of He, C and N in a sample of 35 well-observed Galactic planetary nebulae (PN). All observations, data reductions, and abundance determinations were performed in house to ensure maximum homogeneity. Progenitor star masses (M ≤ 4 M ⊙ ) were inferred using two published sets of post-AGB model tracks and L and T ef f values. We conclude the following: 1) the mean values of N/O across the progenitor mass range exceeds the solar value, indicating significant N enrichment in the majority of our objects; 2) the onset of hot bottom burning appears to begin around 2 M ⊙ , i.e., lower than ∼ 5 M ⊙ implied by theory; 3) most of our objects show a clear He enrichment, as expected from dredge-up episodes; 4) the average sample C/O value is 1.23, consistent with the effects of third dredge-up; and 5) model grids used to compare to observations successfully span the distribution over metallicity space of all C/O and many He/H data points but mostly fail to do so in the case of N/O. The evident enrichment of N in PN and the general discrepancy between the observed and model-predicted N/O abundance ratios signal the need for extra-mixing as an effect of rotation and/or thermohaline mixing in the models. The unexpectedly high N enrichment that is implied here for low mass stars, if confirmed, will likely impact our conclusions about the source of N in the Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.