Over the last decade, bone engineered tissues have been developed as alternatives to autografts and allografts to repair and reconstruct bone defects. This article provides a review of the current technologies in bone tissue engineering. Factors used for fabrication of three-dimensional bone scaffolds such as materials, cells, and biomolecular signals, as well as required properties for ideal bone scaffolds, are reviewed. In addition, current fabrication techniques including rapid prototyping are elaborated upon. Finally, this review article further discusses some effective strategies to enhance cell ingrowth in bone engineered tissues; for example, nanotopography, biomimetic materials, embedded growth factors, mineralization, and bioreactors. In doing so, it suggests that there is a possibility to develop bone substitutes that can repair bone defects and promote new bone formation for orthopedic applications.
h i g h l i g h t s g r a p h i c a l a b s t r a c t ZnO activation of metallic Al for generating electricity for bioelectronic applications. Selective electrocatalysis in phosphate rich electrolyte. A cell operating in physiological saline buffer produces an open-circuit voltage of 0.751 V. A maximum power density of 1.77 mW cm À2 was obtained.a b s t r a c t Electrochemical power sources have motivated intense research efforts in the development of alternative 'green' power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a 'green' alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H 2 PO 4 À ions to HPO 3 2À ions at a formal potential of À0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm À2 and 1.77 mW cm À2 , respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel "green" alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.