Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements.
Since the early 1960s, the fungal pathogen Aspergillus flavus (Link ex Fr.) has been the focus of intensive research due to the production of carcinogenic and highly toxic secondary metabolites collectively known as aflatoxins following pre-harvest colonization of crops. Given this recurrent problem and the occurrence of a severe aflatoxin outbreak in maize (Zea mays L.), particularly in the Southeast U.S. in the 1977 growing season, a significant research effort has been put forth to determine the nature of the interaction occurring between aflatoxin production, A. flavus, environment and its various hosts before harvest. Many studies have investigated this interaction at the genetic, transcript, and protein levels, and in terms of fungal biology at either pre- or post-harvest time points. Later experiments have indicated that the interaction and overall resistance phenotype of the host is a quantitative trait with a relatively low heritability. In addition, a high degree of environmental interaction has been noted, particularly with sources of abiotic stress for either the host or the fungus such as drought or heat stresses. Here, we review the history of research into this complex interaction and propose future directions for elucidating the relationship between resistance and susceptibility to A. flavus colonization, abiotic stress, and its relationship to oxidative stress in which aflatoxin production may function as a form of antioxidant protection to the producing fungus.
Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels of H2O2 to investigate the relationship of secondary metabolite production, carbon source, and oxidative stress. We found that toxigenic and atoxigenic isolates employ distinct mechanisms to remediate oxidative damage, and that carbon source affected the isolates’ expression profiles. Iron metabolism, monooxygenases, and secondary metabolism appeared to participate in isolate oxidative responses. The results suggest that aflatoxin and aflatrem biosynthesis may remediate oxidative stress by consuming excess oxygen and that kojic acid production may limit iron-mediated, non-enzymatic generation of reactive oxygen species. Together, secondary metabolite production may enhance A. flavus stress tolerance, and may be reduced by enhancing host plant tissue antioxidant capacity though genetic improvement by breeding selection.
Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently in different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are in agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.