Nature has developed a wide range of functional microstructures with optimized mechanical properties over millions of years of evolution. By learning from nature’s excellent models and principles, biomimicry provides a practicable strategy for designing and fabricating the next smart materials with enhanced properties. Nevertheless, the complicated micro-structural constructions in nature models are beyond the ability of conventional processes, hindering the developments of biomimetic research and its forthputting in engineering systems. Additive manufacturing (AM) or 3D printing processes have revolutionized manufacturing via their ability to manufacture complex micro/mesostructures, increase design freedom, provide mass customization, and waste minimization, as well as rapid prototyping. Here, a review of recent advances in biomimetic 3D printing materials with enhanced mechanical properties is provided. The design and fabrication were inspired by various natural structures, such as balsa wood, honeycomb, nacre, lobster claw, etc., which are presented and discussed. Finally, future challenges and perspectives are given.
Certain types of Salvinia water ferns present a highly water-repellent upper surface along their floating leaves. This is accomplished through the use of structured trichomes, which create hydrophobic and superhydrophobic surfaces. Particularly, there are four different types of trichomes found in Salvinia plants that present these characteristics. They are known as Cucullata type, Oblongifolia type, Natans type and Molesta type. However, these structures are characterized by very small sizes, along with complex shapes. With the advantages of high-efficiency, low-cost, fast-fabrication, and ability of producing microstructures, additive manufacturing (AM), known as 3D printing method, has brought lots of attentions to various academic fields. Herein, we apply a 3D printing method to create biomimetic structures designed after the trichomes on Salvinia. In this work, the hydrophobic properties of the four biomimetic structures were tested through the use of optical contact angle measurements after initial modeling through the CAD program Solidworks. Finally, an Optical Contact Angle measurement device was used to determine the hydrophobic properties of each structure. This study concludes that each of the four biomimetic structures based on the different types of trichomes of Salvinia have hydrophobic performance. In particular, the Natans type and Molesta type show superhydrophobic properties, with the Molesta inspired structure displaying the highest contact angle among the four types. These results suggest that future research into the trichome structures of Salvinia water ferns could produce biomimetic structures with enhanced hydrophobic properties and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.