Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices.
Arrays of plasmonic pentamers consisting of five metallic nano-disks were designed and fabricated to achieve a pronounced Fano Resonance with polarization-independent far-field spectral response at normal incidence due to the structure symmetry of pentamers. A mass-spring coupled oscillator model was applied to study plasmon interactions among the nano-disks. It was found that the direction of the excitation light polarization can flexibly tune the spatial localization of near-field energy at sub-wavelength scales while the collective optical properties are kept constant. It can lead to a selective storage of excited energy down to sub-20 nm gap at a normal incident with a single light source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.