vast improvements in energy density may be achieved with lithium metal anodes owing to their high gravimetric capacity (3869 mA h g −1 ) and low density (0.534 g cm −3 ). However, adoption of rechargeable lithium metal batteries has been unsuccessful thus far due to safety concerns associated with short circuits that occur when Li dendrites grow through the liquid electrolyte during the charging process. [4][5][6] Although several approaches have reduced dendrite formation, [7][8][9][10] to date the phenomenon has not been avoided under all relevant conditions. Nonflammable inorganic solid electrolytes, paired with Li metal anodes, could result in high energy density yet safe rechargeable lithium batteries. [11][12][13][14][15] As reviewed by Takada, [12] inorganic solid electrolytes have now been widely studied, [16][17][18][19][20] but are not yet commercialized. Monroe and Newman have suggested that dendrite growth during the plating process may be suppressed if the liquid electrolyte is replaced with a Li-ion conducting solid electrolyte of a sufficiently high shear modulus. [21,22] According to this criterion, numerous inorganic solid electrolytes should be able to suppress dendrite formation. However, multiple research groups have recently reported cases where ceramic solid electrolytes paired with a Li metal anode experience a short circuit Li deposition is observed and measured on a solid electrolyte in the vicinity of a metallic current collector. Four types of ion-conducting, inorganic solid electrolytes are tested: Amorphous 70/30 mol% Li 2 S-P 2 S 5 , polycrystalline β-Li 3 PS 4 , and polycrystalline and single-crystalline Li 6 La 3 ZrTaO 12 garnet. The nature of lithium plating depends on the proximity of the current collector to defects such as surface cracks and on the current density. Lithium plating penetrates/infiltrates at defects, but only above a critical current density. Eventually, infiltration results in a short circuit between the current collector and the Li-source (anode). These results do not depend on the electrolytes shear modulus and are thus not consistent with the Monroe-Newman model for "dendrites." The observations suggest that Li-plating in pre-existing flaws produces crack-tip stresses which drive crack propagation, and an electrochemomechanical model of plating-induced Li infiltration is proposed. Lithium short-circuits through solid electrolytes occurs through a fundamentally different process than through liquid electrolytes. The onset of Li infiltration depends on solid-state electrolyte surface morphology, in particular the defect size and density.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.