The PI-SceI endonuclease from yeast belongs to a protein family whose members contain two conserved dodecapeptide motifs within their primary sequences. The function of two acidic residues within these motifs, Asp218 and Asp326, was examined by substituting alanine, asparagine, and glutamic acid residues at these positions. All of the purified mutant proteins bind to the PI-SceI recognition site with the same affinity and specificity as the wild-type enzyme. By contrast, substituting alanine or asparagine amino acids at the two positions completely eliminates strand cleavage of substrate DNA, whereas substitution with glutamic acid markedly reduces the cleavage activity. Experiments using nicked substrates demonstrate that the wild-type enzyme shows no strand preference during cleavage. These results are consistent with a model in which both acidic residues are part of a single catalytic center that cleaves both DNA strands. Furthermore, substrate binding by wild-type PI-SceI stimulates hydroxyl radical or hydroxide ion attack at the cleavage site while binding by the alanine-substituted proteins either stimulates this attack significantly less or protects the DNA at this position. These finding are discussed in terms of possible reaction mechanisms for PI-SceI-mediated endonucleolytic cleavage.
To understand how plants from the Fabaceae family maintain zinc (Zn) homeostasis, we have characterized the kinetics of three Zn transporting proteins from the ZIP family of divalent metal transporters in the model legume Medicago truncatula. Of six ZIP's studied, MtZIP1, MtZIP5 and MtZIP6 were the only members from this family determined to transport Zn and were further characterized. MtZIP1 has a low affinity for Zn with a K(m) of 1 μM as compared to MtZIP5 and MtZIP6 that have a higher affinity for Zn with K(m) of 0.4 μM and 0.3 μM, respectively. Zn transport by MtZIP1 was more sensitive to inhibition by copper (Cu) concentrations than MtZIP5 and MtZIP6, because 3 μM Cu inhibited Zn transport by 80% in MtZIP1 while 5 μM Cu was required to achieve the same inhibition of Zn transport in MtZIP5 and MtZIP6. Cadmium (Cd) had a greater effect on the ability of MtZIP1 to transport Zn than MtZIP5 and MtZIP6, because at a concentration of 3 μM Cd, the Zn transport by MtZIP1 was inhibited 55% and the transport of Zn by MtZIP5 and MtZIP6 was inhibited by 20-30%. However, only MtZIP6 transported Cd at higher rates than those observed in the control plasmid pFL61, demonstrating a low affinity for Cd based on a K(m) of 57 μM. These results suggest that Medicago truncatula has both high and low affinity Zn transporters to maintain Zn homeostasis and that these transporters may function in different compartments within the plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.