COVID-19 has raised new challenges for transportation in the post-pandemic era. The social distancing requirement, with the aim of reducing contact risk in public transit, could exacerbate traffic congestion and emissions. We propose a simulation tool to evaluate the trade-offs between traffic congestion, emissions, and policies impacting travel behavior to mitigate the spread of COVID-19 including social distancing and working from home. Open-source agent-based simulation models are used to evaluate the transportation system usage for the case study of New York City. A Post Processing Software for Air Quality (PPS-AQ) estimation is used to evaluate the air quality impacts. Finally, system-wide contact exposure on the subway is estimated from the traffic simulation output. The social distancing requirement in public transit is found to be effective in reducing contact exposure, but it has negative congestion and emission impacts on Manhattan and neighborhoods at transit and commercial hubs. While telework can reduce congestion and emissions citywide, in Manhattan the negative impacts are higher due to behavioral inertia and social distancing. The findings suggest that contact exposure to COVID-19 on subways is relatively low, especially if social distancing practices are followed. The proposed integrated traffic simulation models and air quality estimation model can help policymakers evaluate the impact of policies on traffic congestion and emissions as well as identifying hot spots, both temporally and spatially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.