IntroductionPulmonary sarcoidosis is a rare heterogeneous lung disease of unknown aetiology, with limited treatment options. Phenotyping relies on clinical testing including visual scoring of chest radiographs. Objective radiomic measures from high-resolution computed tomography (HRCT) may provide additional information to assess disease status. As the first radiomics analysis in sarcoidosis, we investigate the potential of radiomic measures as biomarkers for sarcoidosis, by assessing 1) differences in HRCT between sarcoidosis subjects and healthy controls, 2) associations between radiomic measures and spirometry, and 3) trends between Scadding stages.MethodsRadiomic features were computed on HRCT in three anatomical planes. Linear regression compared global radiomic features between sarcoidosis subjects (n=73) and healthy controls (n=78), and identified associations with spirometry. Spatial differences in associations across the lung were investigated using functional data analysis. A subanalysis compared radiomic features between Scadding stages.ResultsGlobal radiomic measures differed significantly between sarcoidosis subjects and controls (p<0.001 for skewness, kurtosis, fractal dimension and Geary's C), with differences in spatial radiomics most apparent in superior and lateral regions. In sarcoidosis subjects, there were significant associations between radiomic measures and spirometry, with a large association found between Geary's C and forced vital capacity (FVC) (p=0.008). Global radiomic measures differed significantly between Scadding stages (p<0.032), albeit nonlinearly, with stage IV having more extreme radiomic values. Radiomics explained 71.1% of the variability in FVC compared with 51.4% by Scadding staging alone.ConclusionsRadiomic HRCT measures objectively differentiate disease abnormalities, associate with lung function and identify trends in Scadding stage, showing promise as quantitative biomarkers for pulmonary sarcoidosis.
Rationale: A subpopulation of B cells (age-associated B cells [ABCs]) is increased in mice and humans with infections or autoimmune diseases. Because depletion of these cells might be valuable in patients with certain lung diseases, the goal was to find out if ABC-like cells were at elevated levels in such patients.Objectives: To measure ABC-like cell percentages in patients with lung granulomatous diseases.Methods: Peripheral blood and BAL cells from patients with sarcoidosis, beryllium sensitivity, or hypersensitivity pneumonitis and healthy subjects were analyzed for the percentage of B cells that were ABC-like, defined by expression of CD11c, low levels of CD21, FcRL 1-5 (Fc receptor-like protein 1-5) expression, and, in some cases, T-bet.Measurements and Main Results: ABC-like cells in blood were at low percentages in healthy subjects and higher percentages in patients with sarcoidosis as well as at high percentages among BAL cells of patients with sarcoidosis, beryllium disease, and hypersensitivity pneumonitis. Treatment of patients with sarcoidosis led to reduced percentages of ABC-like cells in blood.Conclusions: Increased levels of ABC-like cells in patients with sarcoidosis may be useful in diagnosis. The increase in percentage of ABC-like cells in patients with lung granulomatous diseases and decrease in treated patients suggests that depletion of these cells may be valuable.
Pulmonary involvement occurs in up to 95% of sarcoidosis cases. In this pilot study, we examine lung compartment-specific protein expression to identify pathways linked to development and progression of pulmonary sarcoidosis. We characterized bronchoalveolar lavage (BAL) cells and fluid (BALF) proteins in recently diagnosed sarcoidosis cases. We identified 4,306 proteins in BAL cells, of which 272 proteins were differentially expressed in sarcoidosis compared to controls. These proteins map to novel pathways such as integrin-linked kinase and IL-8 signaling and previously implicated pathways in sarcoidosis, including phagosome maturation, clathrin-mediated endocytic signaling and redox balance. In the BALF, the differentially expressed proteins map to several pathways identified in the BAL cells. The differentially expressed BALF proteins also map to aryl hydrocarbon signaling, communication between innate and adaptive immune response, integrin, PTEN and phospholipase C signaling, serotonin and tryptophan metabolism, autophagy, and B cell receptor signaling. Additional pathways that were different between progressive and non-progressive sarcoidosis in the BALF included CD28 signaling and PFKFB4 signaling. Our studies demonstrate the power of contemporary proteomics to reveal novel mechanisms operational in sarcoidosis. Application of our workflows in well-phenotyped large cohorts maybe beneficial to identify biomarkers for diagnosis and prognosis and therapeutically tenable molecular mechanisms.
Oral NAC increased GSH levels but failed to suppress in-vivo TNF-α production in contrast to effects in-vitro. Anti-oxidant therapy may still play a role in the management of sarcoidosis but therapy with better bioavailability or potency is needed to suppress the lung inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.