We quantified the relative influence of maternal fidelity to feeding grounds and natal fidelity to breeding grounds on the population structure of humpback whales Megaptera novaeangliae based on an ocean-wide survey of mitochondrial (mt) DNA diversity in the North Pacific. For 2193 biopsy samples collected from whales in 10 feeding regions and 8 breeding regions during the winter and summer of 2004 to 2006, we first used microsatellite genotyping (average, 9.5 loci) to identify replicate samples. From sequences of the mtDNA control region (500 bp) we identified 28 unique haplotypes from 30 variable sites. Haplotype frequencies differed markedly among feeding regions (overall F ST = 0.121, Φ ST = 0.178, p < 0.0001), supporting previous evidence of strong maternal fidelity. Haplotype frequencies also differed markedly among breeding regions (overall F ST = 0.093, Φ ST = 0.106, p < 0.0001), providing evidence of strong natal fidelity. Although sex-biased dispersal was not evident, differentiation of microsatellite allele frequencies was weak compared to differentiation of mtDNA haplotypes, suggesting male-biased gene flow. Feeding and breeding regions showed significant differences in haplotype frequencies, even for regions known to be strongly connected by patterns of individual migration. Thus, the influence of migratory fidelity seems to operate somewhat independently on feeding and breeding grounds over an evolutionary time scale. This results in a complex population structure and the potential to define multiple units to conserve in either seasonal habitat.
We estimated the abundance of humpback whales in the North Pacific by capture‐recapture methods using over 18,000 fluke identification photographs collected in 2004–2006. Our best estimate of abundance was 21,808 (CV = 0.04). We estimated the biases in this value using a simulation model. Births and deaths, which violate the assumption of a closed population, resulted in a bias of +5.2%, exclusion of calves in samples resulted in a bias of −10.5%, failure to achieve random geographic sampling resulted in a bias of −0.4%, and missed matches resulted in a bias of +9.3%. Known sex‐biased sampling favoring males in breeding areas did not add significant bias if both sexes are proportionately sampled in the feeding areas. Our best estimate of abundance was 21,063 after accounting for a net bias of +3.5%. This estimate is likely to be lower than the true abundance due to two additional sources of bias: individual heterogeneity in the probability of being sampled (unquantified) and the likely existence of an unknown and unsampled breeding area (−8.7%). Results confirm that the overall humpback whale population in the North Pacific has continued to increase and is now greater than some prior estimates of prewhaling abundance.
Certain populations of killer whales Orcinus orca feed primarily or exclusively on marine mammals. However, whether or not baleen whales represent an important prey source for killer whales is debatable. A hypothesis by Springer et al. (2003) suggested that overexploitation of large whales by industrial whaling forced killer whales to prey-switch from baleen whales to pinnipeds and sea otters, resulting in population declines for these smaller marine mammals in the North Pacific and southern Bering Sea. This prey-switching hypothesis is in part contingent upon the idea that killer whales commonly attack mysticetes while they are in these high-latitude areas. In this study, we used photographic and sighting data from long-term studies of baleen whales in 24 regions worldwide to determine the proportion of whales that bear scars (rake marks) from killer whale attacks, and to examine the timing of scar acquisition. The results of this study show that there is considerable geographic variation in the proportion of whales with rake marks, ranging from 0% to > 40% in different regions. In every region, the great majority of the scars seen were present on the whales' bodies when the animals were first sighted. Less than 7% (9 of 132) of scarred humpback whales with multi-year sighting histories acquired new scars after the first sighting. This suggests that most killer whale attacks on baleen whales target young animals, probably calves on their first migration from low-latitude breeding and calving areas to high-latitude feeding grounds. Overall, our results imply that adult baleen whales are not an important prey source for killer whales in high latitudes, and therefore that one of the primary assumptions underlying the Springer et al. (2003) prey-switching hypothesis (and its purported link to industrial whaling) is invalid.
Tags containing acoustic time‐depth transmitters (ATDT) were attached to four humpback whales near Kodiak, Alaska. Tags allowed for whale dive depths to be recorded in real time. Acoustic and mid‐water trawl surveys were conducted concurrent with tagging efforts within the study area to quantify available fish resources and describe potential prey selection by humpback whales. Recorded dives were grouped through visual assessment and t‐tests. Dives that indicated likely foraging occurred at a mean maximum depth of 106.2 m with 62% of dives occurring between 92 m and 120 m. Acoustic backscatter from fish surveys was attributed to potential humpback prey based on known target strength values and 10 net tows. Capelin comprised 84% of the total potential prey abundance in the region followed by age 0 (12%) and juvenile pollock (2%), and eulachon (<1%). Although horizontally segregated in the region, both capelin and age 0 pollock were distributed at depths exceeding 92 m with maximum abundance between 107 m and 120 m. The four‐tagged humpbacks were found to forage in areas with greatest capelin densities but bypassed areas of high age 0 pollock abundance. The location and diving behavior of tagged whales suggested that whales were favoring capelin over pollock as a prey source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.