The cerebral cortex, with all its computational power, can only influence behavior via corticofugal connections originating from layer 5 (L5) cells (Sherman and Guillery, 2013). To begin to establish the global pattern of these outputs, we examined L5 efferents originating from four cortical areas: somatosensory, visual, motor, and prefrontal (i.e., ventromedial orbitofrontal) cortex. We injected Cre-dependent adeno-associated virus in an Rbp4-Cre transgenic mouse line (both sexes) to label these L5 efferents selectively. Our study reveals that, across this diverse series of cortical regions, L5 commonly projects to multiple thalamic and extrathalamic sites. We also identified several novel corticofugal targets (i.e., the lateral dorsal nucleus, submedial nucleus) previously unidentified as L5 targets. We identified common patterns for these projections: all areas innervated both thalamus and the midbrain, and all areas innervated multiple thalamic targets, including those with core and matrix cell types (Jones, 1998). An examination of the terminal size within each of these targets suggests that terminal populations of L5 efferents are not consistently large but vary with cortical area and target; and in some cases, these include small terminals only. Overall, our data reveal more widespread and diverse L5 efferents than previously appreciated, suggesting a generalizable role for this cortical layer in influencing motor commands and cognitive processes.
During auditory development, changes in membrane properties promote the ability of excitatory neurons in the brain stem to code aspects of sound, including the level and timing of a stimulus. Some of these changes coincide with hearing onset, suggesting that sound-driven neural activity produces developmental plasticity of ion channel expression. While it is known that the coding properties of excitatory neurons are modulated by inhibition in the mature system, it is unknown whether there are also developmental changes in the membrane properties of brain stem inhibitory neurons. We investigated the primary source of inhibition in the avian auditory brain stem, the superior olivary nucleus (SON). The present studies test the hypothesis that, as in excitatory neurons, the membrane properties of these inhibitory neurons change after hearing onset. We examined SON neurons at different stages of auditory development: embryonic days 14-16 (E14-E16), a time at which cochlear ganglion neurons are just beginning to respond to sound; later embryonic stages (E18-E19); and after hatching (P0-P2). We used in vitro whole cell patch electrophysiology to explore physiological changes in SON. Age-related changes were observed at the level of a single spike and in multispiking behavior. In particular, tonic behavior, measured as a neuron's ability to sustain tonic firing over a range of current steps, became more common later in development. Voltage-clamp recordings and biophysical models were employed to examine how age-related increases in ion currents enhance excitability in SON. Our findings suggest that concurrent increases in sodium and potassium currents underlie the emergence of tonic behavior. NEW & NOTEWORTHY This article is the first to examine heterogeneity of neuronal physiology in the inhibitory nucleus of the avian auditory system and demonstrate that tonic firing here emerges over development. By pairing computer simulations with physiological data, we show that increases in both sodium and potassium channels over development are necessary for the emergence of tonic firing.
Neurons in the thalamic reticular nucleus (TRN) are a primary source of inhibition to the dorsal thalamus and, as they are innervated in part by the cortex, are a means of corticothalamic regulation. Previously, cortical inputs to the TRN were thought to originate solely from layer 6 (L6), but we recently reported the presence of putative synaptic terminals from layer 5 (L5) neurons in multiple cortical areas in the TRN [J. A. Prasad, B. J. Carroll, S. M. Sherman, J. Neurosci. 40, 5785–5796 (2020)]. Here, we demonstrate with electron microscopy that L5 terminals from multiple cortical regions make bona fide synapses in the TRN. We further use light microscopy to localize these synapses relative to recently described TRN subdivisions and show that L5 terminals target the edges of the somatosensory TRN, where neurons reciprocally connect to higher-order thalamus, and that L5 terminals are scarce in the core of the TRN, where neurons reciprocally connect to first-order thalamus. In contrast, L6 terminals densely innervate both edge and core subregions and are smaller than those from L5. These data suggest that a sparse but potent input from L5 neurons of multiple cortical regions to the TRN may yield transreticular inhibition targeted to higher-order thalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.