Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Introduction: COVID-19 has been associated with increased risk of thrombosis, heparin resistance and coagulopathy in critically ill patients admitted to intensive care. We report the incidence of thrombotic and bleeding events in a single center cohort of 30 consecutive patients with COVID-19 supported by veno-venous extracorporeal oxygenation (ECMO) and who had a whole body Computed Tomography Scanner (CT) on admission. Methodology: All patients were initially admitted to other hospitals and later assessed and retrieved by our ECMO team. ECMO was initiated in the referral center and all patients admitted through our CT scan before settling in our intensive care unit. Clinical management was guided by our institutional ECMO guidelines, established since 2011 and applied to at least 40 patients every year. Results: We diagnosed a thrombotic event in 13 patients on the initial CT scan. Two of these 13 patients subsequently developed further thrombotic complications. Five of those 13 patients had a subsequent clinically significant major bleeding. In addition, two patients presented with isolated intracranial bleeds. Of the 11 patients who did not have baseline thrombotic events, one had a subsequent oropharyngeal hemorrhage. When analyzed by ROC analysis, the area under the curve for % time in intended anticoagulation range did not predict thrombosis or bleeding during the ECMO run (0.36 (95% CI 0.10–0.62); and 0.51 (95% CI 0.25–0.78); respectively). Conclusion: We observed a high prevalence of VTE and a significant number of hemorrhages in these severely ill patients with COVID-19 requiring veno-venous ECMO support.
Idiopathic thoracic, thoracolumbar, and Scheuermann's kyphosis do not figure in the same global entity. We propose a classification for so-called "regular" kyphosis. This classification is based on the location of the most rigid curvature segment. Segmental kyphosis may be short, in which case we can distinguish between four types: high kyphosis (type I), middle kyphosis (type II), low or thoracolumbar kyphosis (type III), and segmental kyphosis, which can extend along the entire thoracic spine (type IV). The symptomatology and therapeutic indications are different for each type. We report a series of 15 patients (6 female, 9 male), aged between 18 and 33 years (average age 24 years). The mean kyphosis angle (Cobb angle) in type I patients ( n = 3) was 75 ° in type II patients (n = 3) it was 82 °, and in type III patients (n = 9) it was 78 °. The pain was greater in type III patients. All patients were operated on using a double approach. As the first step, we performed an anterior approach, disc excision, and bone graft. Ten days later, a posterior approach with CD instrumentation was carried out on ten levels. The mean follow-up is 4 years (range 9 months in 7 years). We noticed no neurological complications and one case of late sepsis. Mean angular loss of correction was 6 ° . The correction obtained dependend on the type of kyphosis. We obtained a mean postoperative Cobb angle of 63 ° in type I curves, 55 ° in type II, and 45 ° in type III. The new classification allows a better understanding of regular kyphosis and helps to define clinical and therapeutic approaches. An analysis of the resulting surgical correction can also be made by comparing homogeneous groups of patients.
Introduction CONTACT is a national multidisciplinary study assessing the impact of the COVID-19 pandemic upon diagnostic and treatment pathways among patients with pancreatic ductal adenocarcinoma (PDAC). Methods The treatment of consecutive patients with newly diagnosed PDAC from a pre-COVID-19 pandemic cohort (07/01/2019-03/03/2019) were compared to a cohort diagnosed during the first wave of the UK pandemic (‘COVID’ cohort, 16/03/2020-10/05/2020), with 12-month follow-up. Results Among 984 patients (pre-COVID: n = 483, COVID: n = 501), the COVID cohort was less likely to receive staging investigations other than CT scanning (29.5% vs. 37.2%, p = 0.010). Among patients treated with curative intent, there was a reduction in the proportion of patients recommended surgery (54.5% vs. 76.6%, p = 0.001) and increase in the proportion recommended upfront chemotherapy (45.5% vs. 23.4%, p = 0.002). Among patients on a non-curative pathway, fewer patients were recommended (47.4% vs. 57.3%, p = 0.004) or received palliative anti-cancer therapy (20.5% vs. 26.5%, p = 0.045). Ultimately, fewer patients in the COVID cohort underwent surgical resection (6.4% vs. 9.3%, p = 0.036), whilst more patients received no anti-cancer treatment (69.3% vs. 59.2% p = 0.009). Despite these differences, there was no difference in median overall survival between the COVID and pre-COVID cohorts, (3.5 (IQR 2.8–4.1) vs. 4.4 (IQR 3.6–5.2) months, p = 0.093). Conclusion Pathways for patients with PDAC were significantly disrupted during the first wave of the COVID-19 pandemic, with fewer patients receiving standard treatments. However, no significant impact on survival was discerned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.