Background Previous research examining physiological changes across the menstrual cycle has considered biological responses to shifting hormones in isolation. Clinical studies, for example, have shown that women’s nightly basal body temperature increases from 0.28 to 0.56 ˚C following postovulation progesterone production. Women’s resting pulse rate, respiratory rate, and heart rate variability (HRV) are similarly elevated in the luteal phase, whereas skin perfusion decreases significantly following the fertile window’s closing. Past research probed only 1 or 2 of these physiological features in a given study, requiring participants to come to a laboratory or hospital clinic multiple times throughout their cycle. Although initially designed for recreational purposes, wearable technology could enable more ambulatory studies of physiological changes across the menstrual cycle. Early research suggests that wearables can detect phase-based shifts in pulse rate and wrist skin temperature (WST). To date, previous work has studied these features separately, with the ability of wearables to accurately pinpoint the fertile window using multiple physiological parameters simultaneously yet unknown. Objective In this study, we probed what phase-based differences a wearable bracelet could detect in users’ WST, heart rate, HRV, respiratory rate, and skin perfusion. Drawing on insight from artificial intelligence and machine learning, we then sought to develop an algorithm that could identify the fertile window in real time. Methods We conducted a prospective longitudinal study, recruiting 237 conception-seeking Swiss women. Participants wore the Ava bracelet (Ava AG) nightly while sleeping for up to a year or until they became pregnant. In addition to syncing the device to the corresponding smartphone app daily, women also completed an electronic diary about their activities in the past 24 hours. Finally, women took a urinary luteinizing hormone test at several points in a given cycle to determine the close of the fertile window. We assessed phase-based changes in physiological parameters using cross-classified mixed-effects models with random intercepts and random slopes. We then trained a machine learning algorithm to recognize the fertile window. Results We have demonstrated that wearable technology can detect significant, concurrent phase-based shifts in WST, heart rate, and respiratory rate (all P <.001). HRV and skin perfusion similarly varied across the menstrual cycle (all P <.05), although these effects only trended toward significance following a Bonferroni correction to maintain a family-wise alpha level. Our findings were robust to daily, individual, and cycle-level covariates. Furthermore, we developed a machine learning algorithm that can detect the fertile window with 90% accuracy (95% CI 0.89 to 0.92). Conclusions Our contribut...
Core and peripheral body temperatures are affected by changes in reproductive hormones during the menstrual cycle. Women worldwide use the basal body temperature (BBT) method to aid and prevent conception. However, prior research suggests that taking one’s daily temperature can prove inconvenient and subject to environmental factors. We investigate whether a more automatic, non-invasive temperature measurement system can detect changes in temperature across the menstrual cycle. We examined how wrist skin temperature (WST), measured with wearable sensors, correlates with urinary tests of ovulation and may serve as a new method of fertility tracking. One hundred and thirty-six eumenorrheic, non-pregnant women participated in an observational study. Participants wore WST biosensors during sleep and reported their daily activities. An at-home luteinizing hormone (LH) test was used to confirm ovulation. WST was recorded across 437 cycles (mean cycles/participant = 3.21, S.D. = 2.25). We tested the relationship between the fertile window and WST temperature shifts, using the BBT three-over-six rule. A sustained 3-day temperature shift was observed in 357/437 cycles (82%), with the lowest cycle temperature occurring in the fertile window 41% of the time. Most temporal shifts (307/357, 86%) occurred on ovulation day (OV) or later. The average early-luteal phase temperature was 0.33°C higher than in the fertile window. Menstrual cycle changes in WST were impervious to lifestyle factors, like having sex, alcohol, or eating prior to bed, that, in prior work, have been shown to obfuscate BBT readings. Although currently costlier than BBT, the present study suggests that WST could be a promising, convenient parameter for future multiparameter fertility awareness methods.
ObjectivesWe investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device.DesignInterim analysis of a prospective cohort study.Setting, participants and interventionsParticipants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays.ResultsA total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO.ConclusionWearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial.Trial registration numberISRCTN51255782; Pre-results.
Everyday, we visually perceive people not only in isolation but also in groups. Yet, visual person perception research typically focuses on inferences made about isolated individuals. By integrating social vision and visual ensemble coding, we present novel evidence that (a) perceivers rapidly (500 ms) extract a group’s ratio of men to women and (b) both explicit judgments of threat and indirect evaluative priming of threat increase as the ratio of men to women in a group increases. Furthermore, participants’ estimates of the number of men, and not perceived men’s coalition, mediate the relationship between the ratio of men to women and threat judgments. These findings demonstrate the remarkable efficiency of perceiving a group’s sex ratio and downstream evaluative inferences made from these percepts. Overall, this work advances person perception research into the novel domain of people perception, revealing how the visually perceived sex ratio of groups impacts social judgments.
Human observers extract perceptual summaries for sets of items after brief visual exposure, accurately judging the average size of geometric shapes (Ariely, 2001), walking direction of a crowd (Sweeny, Haroz, & Whitney, 2013), and the eye gaze of groups of faces (Sweeny & Whitney, 2014). In addition to such actuarial summaries, we hypothesize that observers also extract social information about groups that may influence downstream judgments and behavior. In four studies, we first show that humans quickly and accurately perceive the sex ratio of a group after only 500 ms of visual exposure. We then test whether these percepts bias judgments about the group's social attitudes and affect the perceiver's sense of belonging. As the ratio of men to women increased, both male and female perceivers judged the group to harbor more sexist norms, and judgments of belonging changed concomitantly, albeit in opposite directions for men and women. Thus, observers judge a group's sex ratio from a mere glimpse and use it to infer social attitudes and interpersonal affordances. We discuss the implication of these findings for a heretofore overlooked hurtle facing women in male-dominated fields (e.g., science, technology, engineering, or mathematics): how the ratio of men to women provides an early visible cue that signals an individual's potential fit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.