Physical rehabilitation is essential for enhancing recovery in individuals with spinal cord injury (SCI); however, aside from early surgical intervention and hemodynamic management, there are no proven interventions for promoting recovery in the acute phase. In general, early rehabilitation is considered beneficial, but optimal parameters and potential contraindications for implementing rehabilitation at very early time points are unclear. Moreover, clinical trials to date are limited to studies initiating rehabilitation 2 weeks after injury and later. To address these gaps, this article reviews the preclinical literature on physical interventions initiated within the first 8 days postinjury. Effects of early rehabilitation on molecular and structural nervous system changes, behavioral function, and body systems are considered. Most studies utilized treadmill or cycle training as the primary intervention. Treadmill training initiated within the first 3 days and terminated by 1 week after injury worsened autonomic function, inflammation, and locomotor outcomes, while swim training during this period increased microvascular dysfunction. In contrast, lower-intensity rehabilitation such as reach training, ladder training, or voluntary wheel or ball training showed benefits when implemented during the first 3 days. Rehabilitation initiated at 4 days postinjury was also associated with enhanced motor recovery. Cycling appears to have the greatest risk-benefit ratio; however, the effects of cycle training in the first 3 days were not investigated. Overall, research suggests that lower intensity or voluntary rehabilitation during the hyperacute phase is more appropriate until at least 4 days postinjury, at which point higher-intensity activity becomes safer and more beneficial for recovery.
Acute traumatic spinal cord injury (SCI) can be a devastating and costly event for individuals, their families, and the health system as a whole. Prognosis is heavily dependent on the physical extent of the injury and the severity of neurological dysfunction. If not treated urgently, individuals can suffer exacerbated secondary injury cascades that may increase tissue injury and limit recovery. Initial recognition and rapid treatment of acute SCI are vital to limiting secondary injury, reducing morbidity, and providing the best chance of functional recovery. This article aims to review the pathophysiology of SCI and the most up-to-date management of the acute traumatic SCI, specifically examining the modern approaches to surgical treatments along with the ethical limitations of research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.