Recent research suggests that exercise can be effective in reducing pain in animals and humans with neuropathic pain. To investigate mechanisms in which exercise may improve hyperalgesia associated with prediabetes, C57Bl/6 mice were fed either standard chow or a high-fat diet for 12 weeks and were provided access to running wheels (exercised) or without access (sedentary). The high-fat diet induced a number of prediabetic symptoms, including increased weight, blood glucose, and insulin levels. Exercise reduced but did not restore these metabolic abnormalities to normal levels. In addition, mice fed a high-fat diet developed significant cutaneous and visceral hyperalgesia, similar to mice that develop neuropathy associated with diabetes. Finally, a high-fat diet significantly modulated neurotrophin protein expression in peripheral tissues and altered the composition of epidermal innervation. Over time, mice that exercised normalized with regards to their behavioral hypersensitivity, neurotrophin levels, and epidermal innervation. These results confirm that elevated hypersensitivity and associated neuropathic changes can be induced by a high-fat diet and exercise may alleviate these neuropathic symptoms. These findings suggest that exercise intervention could significantly improve aspects of neuropathy and pain associated with obesity and diabetes. Additionally, this work could potentially help clinicians determine those patients which will develop painful versus insensate neuropathy using intraepidermal nerve fiber quantification.
Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy.
To prevent dyslipidemia, our findings suggest that persons who are normolipidemic can improve the lipoprotein profile equally with CON-EX and INT-EX by lowered TC through the sum of changes in LDL-C subfractions, increased mean LDL particle size, and increased HDL-C subfraction 2 concentration.
Of 79 overweight adults with intellectual or developmental disabilities who participated in a weight loss intervention, 73 completed the 6-month diet phase. The emphasis in the intervention was consumption of high volume, low calorie foods and beverages, including meal-replacement shakes. Lower calorie frozen entrees were recommended to control portion size. A walking activity was encouraged. Participants attended monthly meetings in which a small amount of cash was exchanged for self-recorded intake and exercise records completed on picture-based forms. Average weight loss was 13.2 pounds (6.3%) of baseline weight at 6 months, with weight loss shown by 64 of the 73 individuals enrolled. Those completing a 6-month follow-up phase showed weight loss of 9.4% of baseline. Increased choice and control are discussed as possible contributors to individual success.
FNDC5/irisin, has recently been identified as a novel protein that stimulates the “browning” of white adipose by inducing thermogenesis via increased uncoupling protein 1 (UCP1). We tested the hypothesis that high fat diet‐induced prediabetic mice would exhibit increased FNDC5 and this effect would be attenuated by chronic exercise. C57BL/6 mice were randomized into three groups for the 4 week intervention: Standard diet (Std, n = 12), High fat diet (HF, n = 14), or High fat diet and free access to a running wheel (HFEX, n = 14). Body weight, glucose, insulin, and the homeostatic model assessment of insulin resistance (HOMA‐IR) were greater in HF compared to Std and HFEX after the 4 week intervention. In support of our hypothesis, FNDC5 was higher in HF in both skeletal muscle and adipose compared to Std and was lower in adipose only in HFEX compared to HF mice. Following the same pattern, PGC‐1α was significantly higher in HF compared to Std in skeletal muscle and significantly lower in HFEX compared to HF in adipose. UCP1 was significantly lower in HFEX versus Std (in skeletal muscle) and versus HF (in adipose). HOMA‐IR was significantly correlated with FNDC5 protein levels in adipose. Increased FNDC5 in adipose and skeletal muscle may be a compensatory mechanism to offset high fat diet‐induced weight gain and insulin resistance by increasing energy expenditure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.