The experimental breakup of liquid jets subjected to a sinusoidal perturbation is investigated in the Rayleigh and first wind-induced regimes. Stroboscopic illumination of the jet and laser photometry method are used. The ability of linear spatial and temporal theories to describe certain aspects of the phenomenon is stressed. A review of data in the literature shows that the limited experimental windows investigated so far do not allow definite conclusions to be drawn. Our results, obtained over a wide range of fluid viscosity and jet velocity values, show that the linear theory of Sterling and Sleicher accurately predicts the variation in breakup length with jet velocity. The exponential character of the initial growth of a monochromatic perturbation along the jet is also described quantitatively. These results were obtained by carefully controlling the initial jet surface perturbation. It is also shown that transient surface tension and jet contraction have to be taken into account to analyze the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.