We establish an equivalence between three criteria for comparing distributions of an ordinal variable taking finitely many values. The first criterion is the possibility of going from one distribution to the other by a finite sequence of increments and/or Hammond transfers. The latter transfers are like the Pigou-Dalton ones, but without the requirement that the amount transferred be fixed. The second criterion is the unanimity of all comparisons of the distributions performed by a class of additively separable social evaluation functions. The third criterion is a new statistical test based on a weighted recursion of the cumulative distribution. We also identify an exact test for the possibility of going from one distribution to another by a finite sequence of Hammond transfers only. An illustration of the usefulness of our approach for evaluating distributions of self-reported happiness level is also provided.
Inequality indices evaluate the divergence between the income distribution and the hypothetical situation where all individuals receive the mean income, and are unambiguously reduced by a Pigou-Dalton progressive transfer. This paper proposes a new approach to evaluate the divergence between any two income distributions, where the latter can be a reference distribution for the former. In the case where the reference distribution is perfectly egalitarian-and uniquely in this case-we assume that any progressive transfer reduces the divergence, and that the divergence can be additively separated into inequality and efficiency loss. We characterize the unique class of decomposable divergence measures consistent with these views. We derive the associated relative and absolute subclasses, and we illustrate the applicability of our results. This approach extends the generalized entropy studied in inequality measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.