Abstract. Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrates farmers' field experiences (FFEs) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama soil units, KwSUs) based on FFEs, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ evaluation of a location depends on the KwSU described and is thereafter assessed by field soil texture (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). This three-level information aims to reveal SQ improvement potential by comparing, for any location, (a) estimated clay content against median clay content (specific to KwSU) and (b) soil organic status against calculated optimal values (depends on clay content). The combination of farmers' and technical assessment cumulates advantages of both systems of knowledge, namely the integrated long-term knowledge of the farmers and a short-and medium-term SQ status assessment. The toolbox is a suggestion for evaluating SQ and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This suggested SQ toolbox is adapted to a restricted area of north-central Namibia, but similar tools could be developed in most areas where small-scale agriculture prevails.
Abstract. Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrate farmers' field experiences (FFE) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama Soil Units, KwSUs) based on FFE, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ of a location depends on the KwSU described and is thereafter assessed by field soil texture evaluation (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). The resulting information includes internal SQ (KwSU), chemical fertility potential (sand content) and the soil organic carbon content status (colour shade). This three-level information reveals SQ improvement potential and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This SQ toolbox is adapted to a restricted area of north-central Namibia but similar tools could be developed in most areas where small-scale agriculture prevails.
No abstract
Abstract. Sandy soils with fragipans are usually considered poorly suited for agriculture. However, these soils are cultivated in Namibia as they can secure a minimum harvest during droughts. In order to understand the hydrological influence of fragipans in these soils, Ehenge, their soil moisture content was measured for 4 months. These data were then compared to a deep soil without fragipan, Omutunda, which is more productive during normal years but less productive during droughts. The results illustrate that the combination of sandy topsoil and shallow fragipan has beneficial effects on plant-available water during dry periods. Three reasons can be determined: (i) high infiltration rate in the sandy topsoil, (ii) prevention of deep drainage by the fragipan, and (iii) limitation of evaporation losses through the sand. Consequently, transferring these findings to other dry, sandy areas with fragipans, with respective consequences on farming practices, crop productivity, and food security, should be possible.
Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrates farmers' field experiences (FFEs) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama soil units, KwSUs) based on FFEs, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ evaluation of a location depends on the KwSU described and is thereafter assessed by field soil texture (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). This three-level information aims to reveal SQ improvement potential by comparing, for any location, (a) estimated clay content against median clay content (specific to KwSU) and (b) soil organic status against calculated optimal values (depends on clay content). The combination of farmers' and technical assessment cumulates advantages of both systems of knowledge, namely the integrated long-term knowledge of the farmers and a short-and medium-term SQ status assessment. The toolbox is a suggestion for evaluating SQ and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This suggested SQ toolbox is adapted to a restricted area of north-central Namibia, but similar tools could be developed in most areas where small-scale agriculture prevails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.