In this study,
Artemisia annua
stem waste was identified, for the first time, as a potential natural source to produce cellulose microfibers (CMF), as well as cellulose nanocrystals (CNC) with unique functionalities by using various organic acids. The CMF extraction was carried out using alkali and bleaching treatments, while the CNC were isolated under acid hydrolysis by using sulfuric acid (S-CNC), phosphoric acid (P-CNC), and hydrochloric acid / citric acid mixture (C-CNC). The CMF and CNC physicochemical, structural, morphological, dimensional, and thermal properties were characterized. CMF with a yield of 53%, diameter of 5 to 30 µm and crystallinity of 57% were successfully obtained. In contrast, CNC showed a rod-like shape with an aspect ratio of 53, 95, and 64 and a crystallinity index of 84, 79, and 72% for S-CNC, P-CNC, and C-CNC, respectively. Results suggested that the type of acid significantly influenced the structure, morphology, and thermal stability of CNCs. Based on these results,
Artemisia annua
stem waste is a great candidate source for cellulose derivatives with excellent characteristics.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.