Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.
The rhesus macaque (RM) is a critical animal model for studies of viral pathogenesis and immunity, yet fundamental aspects of their cellular immune response remain poorly defined. One such deficiency is the lack of validated phenotypic signatures for their naive and memory T cell subsets, and the resultant unavailability of accurate information on their memory T cell development, homeostasis, and function. In this study, we report a phenotypic paradigm allowing definitive characterization of these subsets and their comprehensive functional analysis. Naive T cells are optimally delineated by their homogeneous CD95lowCD28highβ7 integrinint (CD4+) or CD95lowCD28intCD11alow (CD8+) phenotypes. This subset 1) was present in blood and secondary lymph tissues, but not effector sites; 2) vastly predominated in the fetal/neonatal immune system, but rapidly diminished with postnatal age; 3) lacked IFN-γ production capability, and specific responses to RM CMV; and 4) demonstrated low in vivo proliferative activity. CD4+ and CD8+ memory subsets were CD95high, but otherwise phenotypically heterogeneous and included all IFN-γ production, RM CMV-specific responses, effector site T cells, and demonstrated high in vivo proliferative activity (∼10 times the naive subset). These analyses also revealed the RM “effector memory” subset within the overall memory population. This population, best defined by lack of CD28 expression, contained the majority of RM CMV-specific cells, was highly enriched in extralymphoid effector sites, and comprised an increasing proportion of total memory cells with age. The effector memory subset demonstrated similar in vivo proliferative activity and survival as CD28+ “central memory” T cells, consistent with independent homeostatic regulation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.