Interleukin-6 (IL-6) is a pleiotropic cytokine that protects against cardiac ischemia-reperfusion (I/R) injury following pharmacological and ischemic preconditioning (IPC), but the affiliated role in exercise preconditioning is unknown. Our study purpose was to characterize exercise-induced IL-6 cardiac signaling (aim 1) and evaluate myocardial preconditioning (aim 2). In aim 1, C57 and IL-6(-/-) mice underwent 3 days of treadmill exercise for 60 min/day at 18 m/min. Serum, gastrocnemius, and heart were collected preexercise, immediately postxercise, and 30 and 60 min following the final exercise session and analyzed for indexes of IL-6 signaling. For aim 2, a separate cohort of exercise-preconditioned (C57 EX and IL-6(-/-) EX) and sedentary (C57 SED and IL-6(-/-) SED) mice received surgical I/R injury (30 min I, 120 min R) or a time-matched sham operation. Ischemic and perfused tissues were examined for necrosis, apoptosis, and autophagy. In aim 1, serum IL-6 and IL-6 receptor (IL-6R), gastrocnemius, and myocardial IL-6R were increased following exercise in C57 mice only. Phosphorylated (p) signal transducer and activator of transcription 3 was increased in gastrocnemius and heart in C57 and IL-6(-/-) mice postexercise, whereas myocardial iNOS and cyclooxygenase-2 were unchanged in the exercised myocardium. Exercise protected C57 EX mice against I/R-induced arrhythmias and necrosis, whereas arrhythmia score and infarct outcomes were higher in C57 SED, IL-6(-/-) SED, and IL-6(-/-) EX mice compared with SH. C57 EX mice expressed increased p-p44/42 MAPK (Thr(202)/Tyr(204)) and p-p38 MAPK (Thr(180)/Tyr(182)) compared with IL-6(-/-) EX mice, suggesting pathway involvement in exercise preconditioning. Findings indicate exercise exerts cardioprotection via IL-6 and strongly implicates protective signaling originating from the exercised skeletal muscle.
Blood oxidative stress occurred largely independent of PM2.5 concentrations. Future studies should employ longer duration smoke and exercise combined with physiologic parameters.
Previous studies have demonstrated the protective signaling of hypoxia-inducible factor (HIF)-1 ␣ against ischemia-reperfusion (I/R) injury in the heart. In the present study, we provide further evidence for a cardioprotective mechanism by HIF-1␣ against I/R injury exerted via the mitochondrial protein frataxin, which regulates mitochondrial Fe-S cluster formation. Disruption of frataxin has been found to induce mitochondrial iron overload and subsequent ROS production. We observed that frataxin expression was elevated in mice hearts subjected to I/R injury, and this response was blunted in cardiomyocyte-specific HIF-1␣ knockout (KO) mice. Furthermore, these HIF-1␣ KO mice sustained extensive cardiac damage from I/R injury compared with control mice. Similarly, reduction of HIF-1␣ by RNA inhibition resulted in an attenuation of frataxin expression in response to hypoxia in H9C2 cardiomyocytes. Therefore, we postulated that HIF-1␣ transcriptionally regulates frataxin expression in response to hypoxia and offers a cardioprotective mechanism against ischemic injury. Our promoter activity and chromatin immunoprecipitation assays confirmed the presence of a functional hypoxia response element in the frataxin promoter. Our data also suggest that increased frataxin mitigated mitochondrial iron overload and subsequent ROS production, thus preserving mitochondrial membrane integrity and viability of cardiomyocytes. We postulate that frataxin may exert its beneficial effects by acting as an iron storage protein under hypoxia and subsequently facilitates the maintenance of mitochondrial membrane potential and promotes cell survival. The findings from our study revealed that HIF-1␣-frataxin signaling promotes a protective mechanism against hypoxic/ischemic stress.hypoxia-inducible factor-1␣; frataxin; iron-sulfur; mitochondria; ischemia-reperfusion NEWS & NOTEWORTHYThe present study provides evidence for a cardioprotective transcriptional regulatory mechanism by hypoxia-inducible factor-1␣ of the mitochondrial protein frataxin against ischemia-reperfusion injury. Frataxin regulates mitochondrial Fe-S cluster formation and protects against mitochondrial iron overload, the subsequent ROS production, and myocardial energy dysregulation.
Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.
Hypoxic exercise is characterized by workloads decrements. Because exercise and high altitude independently elicit redox perturbations, the study purpose was to examine hypoxic and normoxic steady-state exercise on blood oxidative stress. Active males (n = 11) completed graded cycle ergometry in normoxic (975 m) and hypoxic (3,000 m) simulated environments before programing subsequent matched intensity or workload steady-state trials. In a randomized counterbalanced crossover design, participants completed three 60-min exercise bouts to investigate the effects of hypoxia and exercise intensity on blood oxidative stress. Exercise conditions were paired as such; 60% normoxic VO(2)peak performed in a normoxic environment (normoxic intensity-normoxic environment, NI-NE), 60% hypoxic VO(2)peak performed in a normoxic environment (HI-NE), and 60% hypoxic VO(2)peak performed in a hypoxic environment (HI-HE). Blood plasma samples drawn pre (Pre), 0 (Post), 2 (2HR) and 4 (4HR) hr post exercise were analyzed for oxidative stress biomarkers including ferric reducing ability of plasma (FRAP), trolox equivalent antioxidant capacity (TEAC), lipid hydroperoxides (LOOH) and protein carbonyls (PCs). Repeated-measures ANOVA were performed, a priori significance of p ≤ .05. Oxygen saturation during the HI-HE trial was lower than NI-NE and HI-NE (p < .05). A Time × Trial interaction was present for LOOH (p = .013). In the HI-HE trial, LOOH were elevated for all time points post while PC (time; p = .001) decreased post exercise. As evidenced by the decrease in absolute workload during hypoxic VO(2)peak and LOOH increased during HI-HE versus normoxic exercise of equal absolute (HI-NE) and relative (NI-NE) intensities. Results suggest acute hypoxia elicits work decrements associated with post exercise oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.