Nonsyndromic cleft lip and palate (NS CLP) is a complex birth defect resulting from a combination of genetic and environmental factors. Several members of the FGF and FGFR families are expressed during craniofacial development and can rarely harbor mutations that result in human clefting syndromes. We hypothesized that disruptions in this pathway might also contribute to NS CLP. We sequenced the coding regions and performed association testing on 12 genes (FGFR1, FGFR2, FGFR3, FGF2, FGF3, FGF4, FGF7, FGF8, FGF9, FGF10, FGF18, and NUDT6) and used protein structure analyses to predict the function of amino acid variants. Seven likely disease-causing mutations were identified, including: one nonsense mutation (R609X) in FGFR1, a de novo missense mutation (D73H) in FGF8, and other missense variants in FGFR1, FGFR2, and FGFR3. Structural analysis of FGFR1, FGFR2, and FGF8 variants suggests that these mutations would impair the function of the proteins, albeit through different mechanisms. Genotyping of SNPs in the genes found associations between NS CLP and SNPs in FGF3, FGF7, FGF10, FGF18, and FGFR1. The data suggest that the FGF signaling pathway may contribute to as much as 3-5% of NS CLP and will be a consideration in the clinical management of CLP.fibroblast growth factor ͉ fibroblast growth factor receptor ͉ single-nucleotide polymorphism ͉ cleft palate
Investigations of humans with disorders of sex development (DSDs) resulted in the discovery of many of the now-known mammalian sex-determining genes, including SRY, RSPO1, SOX9, NR5A1, WT1, NR0B1, and WNT4. Here, the locus for an autosomal sex-determining gene was mapped via linkage analysis in two families with 46,XY DSD to the long arm of chromosome 5 with a combined, multipoint parametric LOD score of 6.21. A splice-acceptor mutation (c.634-8T>A) in MAP3K1 segregated with the phenotype in the first family and disrupted RNA splicing. Mutations were demonstrated in the second family (p.Gly616Arg) and in two of 11 sporadic cases (p.Leu189Pro, p.Leu189Arg)-18% prevalence in this cohort of sporadic cases. In cultured primary lymphoblastoid cells from family 1 and the two sporadic cases, these mutations altered the phosphorylation of the downstream targets, p38 and ERK1/2, and enhanced binding of RHOA to the MAP3K1 complex. Map3k1 within the syntenic region was expressed in the embryonic mouse gonad prior to, and after, sex determination. Thus, mutations in MAP3K1 that result in 46,XY DSD with partial or complete gonadal dysgenesis implicate this pathway in normal human sex determination.
Objectives: Non-syndromic orofacial clefts, i.e. cleft lip (CL) and cleft palate (CP), are among the most common birth defects. The goal of this study was to identify genomic regions and genes for CL with or without CP (CL/P). Methods: We performed linkage analyses of a 10 cM genome scan in 820 multiplex CL/P families (6,565 individuals). Significant linkage results were followed by association analyses of 1,476 SNPs in candidate genes and regions, utilizing a weighted false discovery rate (wFDR) approach to control for multiple testing and incorporate the genome scan results. Results: Significant (multipoint HLOD ≥3.2) or genome-wide-significant (HLOD ≥4.02) linkage results were found for regions 1q32, 2p13, 3q27-28, 9q21, 12p11, 14q21-24 and 16q24. SNPs in IRF6 (1q32) and in or near FOXE1 (9q21) reached formal genome-wide wFDR-adjusted significance. Further, results were phenotype dependent in that the IRF6 region results were most significant for families in which affected individuals have CL alone, and the FOXE1 region results were most significant in families in which some or all of the affected individuals have CL with CP. Conclusions: These results highlight the importance of careful phenotypic delineation in large samples of families for genetic analyses of complex, heterogeneous traits such as CL/P.
Introduction and methods-We analyzed DNA samples isolated from individuals born with cleft lip and cleft palate to identify deletions and duplications of candidate gene loci using array comparative genomic hybridization (array-CGH).
Non-syndromic cleft lip and palate (NS CLP) is a complex birth defect resulting from multiple genetic and environmental factors. We have previously reported the sequencing of the coding region of genes in the fibroblast growth factor (FGF) signaling pathway, in which missense and non-sense mutations contribute to approximately 5%-6% NS CLP cases. In this article we report the sequencing of conserved non-coding elements (CNEs) in and around 11 of the FGF and FGFR genes, which identified 55 novel variants. Seven of variants are highly conserved among ≥8 species and 31 variants alter transcription factor binding sites, 8 of which are important for craniofacial development. Additionally, 15 NS CLP patients had a combination of coding mutations and CNE variants, suggesting that an accumulation of variants in the FGF signaling pathway may contribute to clefting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.