Transforming growth factor  (TGF-) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGF-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF- signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Coimmunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGF-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF- signaling.
Endoglin, an endothelial cell-specific transforming growth factor-beta (TGF-beta) superfamily coreceptor, has an essential role in angiogenesis. Endoglin-null mice have an embryonic lethal phenotype due to defects in angiogenesis and mutations in endoglin result in the vascular disease hereditary hemorrhagic telangiectasia type I. Increased endoglin expression in the proliferating endothelium of tumors has been correlated with metastasis, tumor grade and decreased survival. Although endoglin is thought to regulate TGF-beta superfamily signaling in endothelial cells through regulating the balance between two TGF-beta-responsive pathways, the activin receptor-like kinase 5 (ALK5)/Smad2/3 pathway and the activin receptor-like kinase 1 (ALK1)/Smad1/5/8 pathway, the mechanism by which endoglin regulates angiogenesis has not been defined. Here, we investigate the role of the cytoplasmic domain of endoglin and its phosphorylation by ALK5 in regulating endoglin function in endothelial cells. We demonstrate that the cytoplasmic domain of endoglin is basally phosphorylated by ALK5, primarily on serines 646 and 649, in endothelial cells. Functionally, the loss of phosphorylation at serine 646 resulted in a loss of endoglin-mediated inhibition of Smad1/5/8 signaling in response to TGF-beta and endothelial cell migration, whereas loss of phosphorylation at both serines 646 and 649 resulted in a loss of endoglin-mediated inhibition of Smad1/5/8 signaling in response to bone morphogenetic protein-9. Taken together, these results support endoglin phosphorylation by ALK5 as an important mechanism for regulating TGF-beta superfamily signaling and migration in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.