Further information on publisher's website:http://dx.doi.org/10.1039/c2sm26250aPublisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractEmulsion templating has been used to prepare highly porous polyHIPE materials by thiol-ene photoinitiated network formation. Commercially available multifunctional thiols and acrylates were formulated into water-in-oil high internal phase emulsions (HIPEs) using an appropriate surfactant, and the HIPEs were photo-cured. The temperature of the HIPE aqueous phase was found to influence the morphology of the resulting materials. In agreement with previous work, a higher aqueous phase temperature (80 o C) gave rise to a larger mean void and interconnect diameter. The influence of temperature on morphology was found to be reduced at higher porosity, but still significant. The Young's modulus of the porous materials was shown to be related to the functionality of the acrylate comonomer used. A mixture of penta-and hexa-acrylate gave rise to a 100-fold increase in modulus, compared to an analogous tri-functional acrylate. The materials could be functionalised conveniently by addition of mono-acrylates or thiols to the organic phase of the precursor HIPE. Degradation was observed to occur at a rate depending on the degradation conditions. Under cell culture conditions at 37 o C, 19% mass loss occurred over 15 weeks. The scaffolds were found to be capable of supporting the growth of keratinocytic cells (HaCaTs) over 11 days in culture. Some penetrative in-growth of the cells into the scaffold was observed.3
Human mesenchymal stem cells (hMSC) can home to tumor sites and promote tumor growth. The effects of hMSC on tumor growth are controversial and involvement of hMSC in tumor immunology has not been adequately addressed. Therefore, we investigated whether injection of hMSC affects tumor appearance, growth and metastasis, and anti-tumor immunity in an experimental animal model of metastatic breast cancer. Injection of hMSC in BALB/c mice bearing mammary carcinoma promoted tumor growth and metastasis, which was accompanied by lower cytotoxic activity of splenocytes, NK cells and CD8+ T cells in vitro. Tumor-bearing mice that received hMSC had significantly lower percentages of CD3+NKp46+ NKT-like, higher percentages of CD4+Foxp3+ T cells, increased serum levels of Th2 and decreased serum levels of Th1 cytokines, and significantly higher number of CD4+ cells expressing IL-10. These results demonstrate that immunosuppressive environment created by hMSC promoted breast tumor growth and metastasis in mice.
A broad range of technologies have been developed to enable three dimensional (3D) cell culture. Few if any however are adaptable for routine everyday use in a straightforward and cost effective manner. Alvetex(®) is a rigid highly porous polystyrene scaffold designed specifically to enable routine 3D cell culture. The scaffold is engineered into thin membranes that fit into conventional cell culture plasticware. The material is inert and offers a polystyrene substrate familiar to cell biologists worldwide. The 3D geometry of the scaffold provides the environment in which cells grow, differentiate, and function to form close relationships with adjacent cells thus creating the equivalent of a thin tissue layer in vitro. This chapter introduces the features required by a technology that enables routine 3D cell culture. Using Alvetex(®) as a product that satisfies these requirements, its application is demonstrated for the growth of a recognised cell line. Procedures detailing the use of Alvetex(®) for 3D cell culture are provided. This is followed by a series of detailed methods describing ways to analyse such cultures including histological techniques, immunocytochemistry, and scanning electron microscopy. Examples of data generated from these methods are shown in the corresponding figures. Additional notes are also included where further information about certain procedures is required. The use of Alvetex(®) in combination with these methods will enable investigators to routinely produce complex 3D cultures to research the growth, differentiation, and function of cells in new ways.
Twofold sila-substitution (C/Si exchange) of the clinically used RXR-selective retinoid agonist bexarotene leads to disila-bexarotene, which displays pharmacological potency similar to that of the parent carbon compound, as shown in a HeLa-cell-based RXR assay. Formal exchange of the SiCH₂CH₂ Si group in disila-bexarotene with a SiCH₂Si or SiOSi moiety leads to the disila-bexarotene analogues 8 and 9. The silicon compounds 8 and 9 were synthesized in multistep syntheses, starting from HC≡C(CH₃)₂SiCH₂Si(CH₃)₂C≡CH and HC≡C(CH₃)₂SiOSi(CH₃)₂C≡CH, respectively. The key step in the syntheses of 8 and 9 is a cobalt-catalyzed [2+2+2] cycloaddition reaction that affords the 1,3-disilaindane and 2-oxa-1,3-disilaindane skeletons. Disila-bexarotene and its analogues 8 and 9 were studied for their biological effects relative to all-trans retinoic acid in cultured human pluripotent stem cells. The parent carbon compound bexarotene was included in some of these biological studies. Although the silicon-containing bexarotene analogues disila-bexarotene, 8, and 9 appear not to regulate the differentiation of TERA2.cl.SP12 stem cells, preliminary evidence indicates that these compounds may possess enhanced functions over the parent compound bexarotene, such as induction and regulation of cell death and cell numbers. The biological data obtained indicate that bexarotene, contrary to the silicon-containing analogues disila-bexarotene, 8, and 9, may partially act to induce cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.