Background: Endotoxin priming of neutrophils requires NADPH oxidase-derived reactive oxygen species, but localization of oxidant generation is unknown. Results: NADPH oxidase is assembled and active on an endosomal compartment, and endocytosis is required for priming. Conclusion: Intracellular oxidant signaling provides critical regulatory switch for neutrophil inflammatory state. Significance: Modification of neutrophil activation may be advantageous to control host inflammation.
Neutrophil (polymorphonuclear leukocyte) activation with release of granule contents plays an important role in the pathogenesis of acute lung injury, prompting clinical trials of inhibitors of neutrophil elastase. Despite mounting evidence for neutrophil-mediated host tissue damage in a variety of disease processes, mechanisms regulating azurophilic granule exocytosis at the plasma membrane, and thus release of elastase and other proteases, are poorly characterized. We hypothesized that azurophilic granule exocytosis would be enhanced under priming conditions similar to those seen during acute inflammatory events and during chronic inflammatory disease, and selected the cytokine TNF-α to model this in vitro. Neutrophils stimulated with TNF-α alone elicited intracellular reactive oxygen species (ROS) generation and mobilization of secretory vesicles, specific, and gelatinase granules. p38 and ERK1/2 MAPK were involved in these components of priming. TNF-α priming alone did not mobilize azurophilic granules to the cell surface, but did markedly increase elastase release into the extracellular space in response to secondary stimulation with N-formyl-Met-Leu-Phe (fMLF). Priming of fMLF-stimulated elastase release was further augmented in the absence of NADPH oxidase-derived ROS. Our findings provide a mechanism for host tissue damage during neutrophil-mediated inflammation and suggest a novel anti-inflammatory role for the NADPH oxidase.
Importance
Chronic sinusitis is universal in cystic fibrosis (CF) and our current treatments are ineffective in reversing sinus disease.
Objective
to determine if increasing CF transmembrane conductance regulator (CFTR) activity by ivacaftor could treat CF sinus disease and assess its effect on primary sinus epithelial cultures.
Methods
Case report of one patient with long-standing chronic sinus disease and a new diagnosis of CF with a mild mutation (P205S) and a severe mutation (G551D). We discuss clinical changes in symptoms, radiographic findings, nasal potential difference testing, and nasal pH values before and after treatment with ivacaftor. We then developed primary sinonasal epithelial cell cultures from a biopsy of the patient to determine changes in airway surface liquid (ASL) pH and ASL viscosity after ivacaftor treatment.
Results
Ivacaftor treatment reversed CT findings of CF sinus disease, increased nasal voltage and pH and resolved sinus symptoms after ten months of therapy. Ivacaftor significantly increased ASL pH and decreased ASL viscosity in primary airway cultures.
Conclusion
This report documents the reversal of CF sinus disease. Based on our in vivo and in vitro results, we speculate that ivacaftor may reverse CF sinusitis by increasing ASL pH and decreasing ASL viscosity. These studies suggest that CFTR modulation may be effective in treating CF and perhaps non-CF sinusitis.
C3 glomerulopathy (C3G) defines a group of untreatable ultra-rare renal diseases caused by uncontrolled activation of the alternative complement pathway. Nearly half of patients progress to end stage renal failure within 10 years. Cp40, a second-generation compstatin analog in clinical development, is a 14 amino-acid cyclic peptide that selectively inhibits complement activation in humans and non-human primates by binding to C3 and C3b. We hypothesized that by targeting C3 Cp40 would provide an effective treatment for C3G. By investigating its effects in vitro using multiple assays of complement activity, we show that Cp40 prevents complement-mediated lysis of sheep erythrocytes in sera from C3G patients, prevents complement dysregulation in the presence of patient-derived autoantibodies to the C3 and C5 convertases, and prevents complement dysregulation associated with disease-causing genetic mutations. In aggregate, these data suggest that Cp40 may offer a novel and promising therapeutic option to C3G patients as a disease-specific, targeted therapy. As such, Cp40 could represent a major advance in the treatment of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.