This work presents a detailed case study for the optimization of the expansion of a district energy system evaluating the investment decision timing, type of capacity expansion, and fine-scale operational modes. The study develops an optimization framework to find the investment schedule over 30 years with options of investing in traditional heating sources (boilers) or a next-generation combined heat and power (CHP) plant that provides heat and electricity. In district energy systems, the selected capacity and type of system is dependent on demand-side requirements, energy prices, and environmental costs. This work formulates capacity planning over a time horizon as a dynamic optimal control problem considering both operational modes and capital investment decisions. The initial plant is modified by the dynamic optimization throughout the 30 years to maximize profitability. The combined optimal controller and capital investment planner solves a large scale mixed integer nonlinear programming problem to provide the timing and size of the capacity investment (30 year outlook) and also guidance on the mode of operation (1 hour time intervals). The optimizer meets optimal economic, environmental, and regulatory constraints with the suggested design and operational guidance with daily cyclical load following of heat and electricity demand.
This paper presents a review of history matching and oil field development optimization techniques with a focus on optimization algorithms. History matching algorithms are reviewed as a precursor to production optimization algorithms. Techniques for history matching and production optimization are reviewed including global and local methods. Well placement, well control, and combined well placement-control optimization using both secondary and tertiary oil production techniques are considered. Secondary and tertiary recovery techniques are commonly referred to as waterflooding and enhanced oil recovery (EOR), respectively. Benchmark models for comparison of methods are summarized while other applications of methods are discussed throughout. No single optimization method is found to be universally superior. Key areas of future work are combining optimization methods and integrating multiple optimization processes. Current challenges and future research opportunities for improved model validation and large scale optimization algorithms are also discussed.
This work enables accelerated fluid recovery in oil and gas reservoirs by automatically controlling fluid height and bottomhole pressure in wells. Several literature studies show significant increase in recovered oil by determining a target bottomhole pressure but rarely consider how to control to that value. This work enables those benefits by maintaining bottomhole pressure or fluid height. Moving Horizon Estimation (MHE) determines uncertain well parameters using only common surface measurements. A Model Predictive Controller (MPC) adjusts the stroking speed of a sucker rod pump to maintain fluid height. Pump boundary conditions are simulated with Mathematical Programs with Complementarity Constraints (MPCCs) and a nonlinear programming solver finds a solution in near real-time. A combined rod string, well, and reservoir model simulate dynamic well conditions, and are formulated for simultaneous optimization by large-scale solvers. MPC increases cumulative oil production vs. conventional pump off control by maintaining an optimal fluid level height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.