Background. Metabolic syndrome (MS) is a collection of cardiovascular risk factors comprising insulin resistance, dyslipidemia, obesity, and hypertension, which may cause further complications in diabetes. Although metabolic syndrome (MS) is increasing in incidence in diabetics and leading to significant cardiovascular diseases and mortality, there is dearth of data in Ghana. This study investigated metabolic syndrome, its prevalence, and its associated risk factors in type 2 diabetes at the Komfo Anokye Teaching Hospital, Kumasi, Ghana. Methods. The study involved 405 diabetic patients attending the Diabetic Clinic of the Komfo Anokye Teaching Hospital (KATH) Kumasi, in the Ashanti Region of Ghana. A well-structured questionnaire was used to obtain demographic background such as their age and gender. Anthropometric measurements were obtained using the Body Composition Monitor (Omron ® 500, Germany) which generated digital results on a screen and also by manual methods. Fasting venous blood was collected for the measurement of biochemical parameters comprising fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), high density lipoprotein cholesterol (HDL-c), and triglyceride (TG). Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Results. Out of the total of 405 participants, 81 were males and 324 were females, and the estimated mean age was 58.5 ± 9.9 years. The female patients exhibited higher mean waist circumference (WC) and mean hip circumference (HC) as well as an approximately higher body mass index than males (28.3 ± 5.1, 26.5 ± 4.2 for the female and male respectively). Overall, the prevalence of metabolic syndrome observed among the study population was 90.6%. Conclusions. The prevalence of metabolic syndrome observed among the study population was 90.6%, with a higher percentage in females than males. High triglyceride levels and high waist circumference were the main risk factors for MS in the diabetic population.
BackgroundGlycated hemoglobin (HbA1c), owing to its ability to reflect glycemia over a relatively longer time span, is still been investigated as an adjunct test for fasting plasma glucose (FPG) to identify subjects at risk of metabolic syndrome (MetS) in some Caucasian populations. However, whether or not HbA1c can serve as an adjunct to FPG in the definition of MetS in the Ghanaian population remains unknown. This study determined the prevalence of MetS and evaluated HbA1c ≥ 5.6% and FPG ≥ 5.6 mmol/l as the glycemic component of MetS among non-diabetic population in Ghana.MethodsThis was a case–control study conducted at St Francis Xavier Hospital, Assin Fosu, Central Region, Ghana. A total of 264 non-diabetic Ghanaian adults consisting of 158 newly diagnosed hypertensives and 106 normotensives, were recruited for the study. Fasting plasma insulin and glucose, HbA1c, and lipid profile was performed for each respondent.ResultsUsing the FPG as glycemic criterion, the overall MetS prevalence was 46.6%, 37.1%, and 12.5% according by the IDF, NCEP ATP III, and WHO criteria, respectively. The prevalence of MetS using the HbA1c criterion was 54.2%, 52.7%, and 42.4% by the IDF, NCEP ATP III and WHO criteria, respectively. The HbA1c criterion identified more participants with MetS compared to the FPG criterion with a good agreement between HbA1c and FPG using the IDF and NCEP ATP III criteria (κ = 0.484 to 0.899) respectively. However, the overlap between HbA1c and FPG based diagnosis of MetS was limited for the WHO criterion.ConclusionThe prevalence of metabolic syndrome is high among non-diabetics in Ghana. Introduction of HbA1c in addition to FPG in the screening of MetS improves identification of more people with MetS who would otherwise have been missed when only FPG-based diagnosis of MetS is used; with a substantial agreement with FPG, except when using the WHO criteria.Electronic supplementary materialThe online version of this article (10.1186/s13098-019-0423-0) contains supplementary material, which is available to authorized users.
Background: Although visceral fat (VF) and its influence on cardiovascular diseases have been extensively studied among diabetic patients, there is a need for an easier, and less expensive but equally good predictor for VF. This study was conducted to assess potential anthropometric measurements that can be directly linked to visceral fat levels among diabetic patients. Method: 405 diabetic patients attending the Diabetic clinic of the Komfo Anokye Teaching Hospital (KATH) in Kumasi-Ghana were recruited. A well-structured questionnaire was used to obtain the demographic background and brief medical history. Anthropometric measurements were obtained by direct measurement and visceral fat levels was measured using the Body Composition Monitor (Omron ® 500, Germany) which generated digital results on a screen. Results: The total participants comprised 81 males and 324 females, with an average age of 58.5 ± 9.9 years. The females exhibited a higher mean waist circumference (101.4 ± 12.3 cm) and average hip circumference (104.6 ± 9.9 cm) than the males. The female participants also had higher body mass index (BMI) (28.3 ± 5.1 kg/m 2) compared to males (26.5 ± 4.2 kg/m 2). The association between VF and waist circumference was r = 0.631, p ˂ 0.001, followed by hip circumference (r = 0.536; p < 0.001). The significant predictive abilities of waist circumference and hip circumference to identify diabetic patients with high visceral fat were AUC = 0.787; p ˂ 0.001 and AUC = 0.786; p ˂ 0.001, respectively. Conclusion: Waist circumference and hip circumference promise to be potential alternative predictors of visceral fat accumulation in type 2 diabetes.
Despite the availability of several homogenous LDL-C assays, calculated Friedewald's LDL-C equation remains the widely used formula in clinical practice. Several novel formulas developed in different populations have been reported to outperform the Friedewald formula. This study validated the existing LDL-C formulas and derived a modified LDL-C formula specific to a Ghanaian population. In this comparative study, we recruited 1518 participants, derived a new modified Friedewald's LDL-C (M-LDL-C) equation, evaluated LDL-C by Friedewald's formula (F-LDL-C), Martin's formula (N-LDL-C), Anandaraja's formula (A-LDL-C), and compared them to direct measurement of LDL-C (D-LDL-C). The mean D-LDL-C (2.47±0.71 mmol/L) was significantly lower compared to F-LDL-C (2.76±1.05 mmol/L), N-LDL-C (2.74±1.04 mmol/L), A-LDL-C (2.99±1.02 mmol/L), and M-LDL-C (2.97±1.08 mmol/L) p < 0.001. There was a significantly positive correlation between D-LDL-C and A-LDL-C (r=0.658, p<0.0001), N-LDL-C (r=0.693, p<0.0001), and M-LDL-C (r=0.693, p<0.0001). M-LDL-c yielded a better diagnostic performance [(area under the curve (AUC)=0.81; sensitivity (SE) (60%) and specificity (SP) (88%)] followed by N-LDL-C [(AUC=0.81; SE (63%) and SP (85%)], F-LDL-C [(AUC=0.80; SE (63%) and SP (84%)], and A-LDL-C (AUC=0.77; SE (68%) and SP (78%)] using D-LDL-C as gold standard. Bland–Altman plots showed a definite agreement between means and differences of D-LDL-C and the calculated formulas with 95% of values lying within ±0.50 SD limits. The modified LDL-C (M-LDL-C) formula derived by this study yielded a better diagnostic accuracy compared to A-LDL-C and F-LDL-C equations and thus could serve as a substitute for D-LDL-C and F-LDL-C equations in the Ghanaian population.
Introduction. Malaria is a leading cause of mortality among children below 5 years in Ghana. Its parasites are known to cause the degradation of hemoglobin, resulting in the production of reactive oxygen species and hence oxidant stress. Therefore, this study was carried out to compare the levels of oxidative stress between children with complicated and uncomplicated malaria infection in Kumasi, Ghana. Method. Subjects were recruited from hospitals in the Kumasi Metropolis. This was a cross-sectional study, involving 17 complicated malaria subjects, 51 uncomplicated malaria subjects, and 15 nonparasitemic subjects. The rapid diagnostic test (RDT) was used to determine presence or absence of falciparum malaria among the study participants. Blood samples from subjects were used to determine hemoglobin, malondialdehyde (MDA), and vitamin C levels. Results. Majority of the subjects (67.5%) were within the age of 0-5 years. The mean age (±SD) of uncomplicated malaria subjects was 4.32 (±2.81) years, while that of complicated malaria was 4.27 (±2.96). Mean levels of HB decreased significantly in the following order: control subjects > uncomplicated malaria subjects > complicated malaria subjects (p<0.0001). Mean levels of MDA were significantly lower in control subjects compared to complicated malaria subjects (4.62±1.85 versus 6.68±0.70, p=0.0008) and also lowered in uncomplicated malaria subjects compared to complicated malaria (4.50±1.58 versus 6.68±0.70, p<0.0001). There was a statistically significant reduced mean level of vitamin C (p=0.036) in the following order: control subjects > uncomplicated malaria > complicated malaria subjects. However, for the complicated malaria cases, there were significantly higher mean vitamin C levels in females than in males (p<0.001). Conclusion. Malaria progression increases MDA levels and decreases the ascorbate (vitamin C) and hemoglobin levels. It is recommended that future studies should investigate changes in other antioxidant vitamins, like vitamins A and E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.