Metal halide perovskites of the general formula ABX 3 -where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics [1][2][3][4][5] . Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI 3 ) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells [6][7][8][9] , and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO − ) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.Perovskite solar cells (PSCs) have attracted much attention since their first demonstration in 2009 [1][2][3][4][5] . The rapid expansion of research into PSCs has been driven by their low-cost solution processing and attractive optoelectronic properties, including a tunable bandgap 6 , high absorption coefficient 10 , low recombination rate 11 and high mobility of charge carriers 12 . Within a decade, the power conversion efficiency (PCE) of single-junction PSCs progressed from 3% to a certified value of 25.5% 13 , the highest value obtained for thin-film photovoltaics. Moreover, through the use of additive and interface engineering strategies, the long-term operational stability of PSCs now exceeds 1,000 hours in full sunlight 14,15 . PSCs therefore show great promise for deployment as the next generation of photovoltaics.Compositional engineering plays a key part in achieving highly efficient and stable PSCs. In particular, mixtures of methylammonium lead triiodide (MAPbI 3 ) with formamidinium lead triiodide (FAPbI 3 ) have been extensively studied 5,7 . Compared to MAPbI 3 , FAPbI 3 is thermally more stable and has a bandgap closer to the Shockley-Queisser limit 6 , rendering FAPbI 3 the most attractive perovskite layer for single-junction PSCs.Unfortunately, thin FAPbI 3 films undergo a phase transition from the black α-phase to a photoinactive yellow δ-phase below a temperature of 150 °C. Previous approaches to overcome this problem have included mixing FAPbI 3 with a combination of methylammonium (MA + ), caesium (Cs + ) and bromide (Br − ) ions; however, this comes at the cost of blue-shifted absorbance and phase segregation under...
Research relating to organic solar cells based on solution‐processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film‐forming characteristics and film morphology than their small‐molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non‐polymeric, diketopyrrolopyrrole‐based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open‐circuit voltages, leading to power conversion efficiencies of 4.4 ± 0.4% under AM1.5G illumination (100 mW cm−2). Small molecules can therefore be solution processed to form high‐quality BHJ films, which may be used for low‐cost, flexible organic solar cells.
Although most research in the field of organic bulk heterojunction solar cells has focused on combinations of a p-type conducting polymer as a donor and a fullerene-based acceptor, recent work has demonstrated the viability of solution-processed heterojunctions composed entirely of molecular solids. Molecular solids offer potential advantages over conjugated polymer systems in terms of easier purification, amenability to mass-scale production and better batch-to-batch reproducibility. This article reviews the major classes of molecular donors that have been reported in the literature in the past several years and highlights some of key considerations in molecular heterojunction design compared to polymer-based bulk heterojunctions.
So far, one of the fundamental limitations of organic photovoltaic (OPV) device power conversion efficiencies (PCEs) has been the low voltage output caused by a molecular orbital mismatch between the donor polymer and acceptor molecules. Here, we present a means of addressing the low voltage output by introducing novel trimetallic nitride endohedral fullerenes (TNEFs) as acceptor materials for use in photovoltaic devices. TNEFs were discovered in 1999 by Stevenson et al. ; for the first time derivatives of the TNEF acceptor, Lu(3)N@C(80), are synthesized and integrated into OPV devices. The reduced energy offset of the molecular orbitals of Lu(3)N@C(80) to the donor, poly(3-hexyl)thiophene (P3HT), reduces energy losses in the charge transfer process and increases the open circuit voltage (Voc) to 260 mV above reference devices made with [6,6]-phenyl-C(61)-butyric methyl ester (C(60)-PCBM) acceptor. PCEs >4% have been observed using P3HT as the donor material. This work clears a path towards higher PCEs in OPV devices by demonstrating that high-yield charge separation can occur with OPV systems that have a reduced donor/acceptor lowest unoccupied molecular orbital energy offset.
New semi-crystalline photovoltaic polymers were synthesized and the optimized device exhibited 9.39% efficiency in a ∼300 nm thick single-cell device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.