BackgroundThe aim of this study was to evaluate to what extent laboratory data, actual medication, medical history, and/or drug indication influence the quality of medication reviews for nursing home patients.MethodsForty-six health care professionals from different fields were requested to perform medication reviews for three different cases. Per case, the amount of information provided varied in three subsequent stages: stage 1, medication list only; stage 2, adding laboratory data and reason for hospital admission; and stage 3, adding medical history/drug indication. Following a slightly modified Delphi method, a multidisciplinary team performed the medication review for each case and stage. The results of these medication reviews were used as reference reviews (gold standard). The remarks from the participants were scored, according to their potential clinical impact, from relevant to harmful on a scale of 3 to −1. A total score per case and stage was calculated and expressed as a percentage of the total score from the expert panel for the same case and stage.ResultsThe overall mean percentage over all cases, stages, and groups was 37.0% when compared with the reference reviews. For one of the cases, the average score decreased significantly from 40.0% in stage 1, to 30.9% in stage 2, and 27.9% in stage 3; no significant differences between stages was found for the other cases.ConclusionThe low performance, against the gold standard, of medication reviews found in the present study highlights that information is incorrectly used or wrongly interpreted, irrespective of the available information. Performing medication reviews without using the available information in an optimal way can have potential implications for patient safety.
BackgroundIn the nursing home population, it is estimated that 1 in every 3 patients is polymedicated and given their considerable frailty, these patients are especially prone to adverse drug reactions. Clinical pharmacist-led medication reviews are considered successful interventions to improve medication safety in the inpatient setting. Due to the limited available evidence concerning the benefits of medication reviews performed in the nursing home setting, we propose a study aiming to demonstrate a positive effect that a clinical decision support system, as a health care intervention, may have on the target population. The primary objective of this study is to reduce the number of patients with at least one event when using the clinical decision support system compared to the regular care. These events consist of hospital referrals, delirium, falls, and/or deaths.Method/DesignThis study is a multicentre, prospective, randomised study with a cluster group design. The randomisation will be per main nursing home physician and stratified per ward (somatic and psychogeriatric). In the intervention group the clinical decision support system will be used to screen medication list, laboratory values and medical history in order to obtain potential clinical relevant remarks. The remarks will be sent to the main physician and feedback will be provided whether the advice was followed or not. In the control group regular care will be applied.DiscussionWe strongly believe that by using a clinical decision support system, medication reviews are performed in a standardised way which leads to comparable results between patients. In addition, using a clinical decision support system eliminates the time factor to perform medication reviews as the major problems related to medication, laboratory values, indications and/or established patient characteristics will be directly available. In this way, and in order to make the medication review process complete, consultation within healthcare professionals and/or the patient itself will be time effective and the medication surveillance could be performed around the clock.Trial registrationThe Netherlands National Trial Register NTR5165. Registered 2nd April 2015.
ObjectivesDelirium is an underdiagnosed, severe and costly disorder, and 30%–40% of cases can be prevented. A fully automated model to predict delirium (DEMO) in older people has been developed, and the objective of this study is to validate the model in a hospital setting.SettingSecondary care, one hospital with two locations.DesignObservational study.ParticipantsThe study included 450 randomly selected patients over 60 years of age admitted to Zuyderland Medical Centre. Patients who presented with delirium on admission were excluded.Primary outcome measuresDevelopment of delirium through chart review.ResultsA total of 383 patients were included in this study. The analysis was performed for delirium within 1, 3 and 5 days after a DEMO score was obtained. Sensitivity was 87.1% (95% CI 0.756 to 0.939), 84.2% (95% CI 0.732 to 0.915) and 82.7% (95% CI 0.734 to 0.893) for 1, 3 and 5 days, respectively, after obtaining the DEMO score. Specificity was 77.9% (95% CI 0.729 to 0.882), 81.5% (95% CI 0.766 to 0.856) and 84.5% (95% CI 0.797 to 0.884) for 1, 3 and 5 days, respectively, after obtaining the DEMO score.ConclusionDEMO is a satisfactory prediction model but needs further prospective validation with in-person delirium confirmation. In the future, DEMO will be applied in clinical practice so that physicians will be aware of when a patient is at an increased risk of developing delirium, which will facilitate earlier recognition and diagnosis, and thus will allow the implementation of prevention measures.
The success rate of a clinical rule for discontinuation of chronically used BZ/Z for insomnia was low, as reported in the present study. Actions should be taken to help caregivers, patients and family members understand the importance of limiting BZ/Z use to achieve higher discontinuation rates.
ObjectivesTo develop (part I) and validate (part II) an electronic fall risk clinical rule (CR) to identify nursing home residents (NH-residents) at risk for a fall incident.DesignObservational, retrospective case–control study.SettingNursing homes.ParticipantsA total of 1668 (824 in part I, 844 in part II) NH-residents from the Netherlands were included. Data of participants from part I were excluded in part II.Primary and secondary outcome measuresDevelopment and validation of a fall risk CR in NH-residents. Logistic regression analysis was conducted to identify the fall risk-variables in part I. With these, three CRs were developed (ie, at the day of the fall incident and 3 days and 5 days prior to the fall incident). The overall prediction quality of the CRs were assessed using the area under the receiver operating characteristics (AUROC), and a cut-off value was determined for the predicted risk ensuring a sensitivity ≥0.85. Finally, one CR was chosen and validated in part II using a new retrospective data set.ResultsEleven fall risk-variables were identified in part I. The AUROCs of the three CRs form part I were similar: the AUROC for models I, II and III were 0.714 (95% CI: 0.679 to 0.748), 0.715 (95% CI: 0.680 to 0.750) and 0.709 (95% CI: 0.674 to 0.744), respectively. Model III (ie, 5 days prior to the fall incident) was chosen for validation in part II. The validated AUROC of the CR, obtained in part II, was 0.603 (95% CI: 0.565 to 0.641) with a sensitivity of 83.41% (95% CI: 79.44% to 86.76%) and a specificity of 27.25% (95% CI 23.11% to 31.81%).ConclusionMedication data and resident characteristics alone are not sufficient enough to develop a successful CR with a high sensitivity and specificity to predict fall risk in NH-residents.Trial registration numberNot available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.