The most prominent homozygous deletions in cancer affect chromosome 9p21.3 and eliminate CDKN2A/B tumor suppressors, disabling a cell-intrinsic barrier to tumorigenesis. Half of 9p21.3 deletions, however, also encompass a type I interferon (IFN) gene cluster; the consequences of this co-deletion remain unexplored. To functionally dissect 9p21.3 and other large genomic deletions, we developed a flexible deletion engineering strategy, MACHETE (molecular alteration of chromosomes with engineered tandem elements). Applying MACHETE to a syngeneic mouse model of pancreatic cancer, we found that co-deletion of the IFN cluster promoted immune evasion, metastasis and immunotherapy resistance. Mechanistically, IFN co-deletion disrupted type I IFN signaling in the tumor microenvironment, leading to marked changes in infiltrating immune cells and escape from CD8+ T-cell surveillance, effects largely driven by the poorly understood interferon epsilon. These results reveal a chromosomal deletion that disables both cell-intrinsic and cell-extrinsic tumor suppression and provide a framework for interrogating large deletions in cancer and beyond.
Chromosomal translocations constitute driver mutations in solid tumors and leukemias. The mechanisms of how related or even identical gene fusions drive the pathogenesis of various tumor types remain elusive. One remarkable example is the presence of EWSR1 fusions with CREB1 and ATF1, members of the CREB family of transcription factors, in a variety of sarcomas, carcinomas and mesotheliomas. To address this, we have developed in vitro models of oncogenic fusions, in particular, EWSR1-CREB1 and EWSR1-ATF1, in human embryonic stem (hES) cells, which are capable of multipotent differentiation, using CRISPR-Cas9 technology and HDR together with conditional fusion gene expression that allows investigation into the early steps of cellular transformation. We show that expression of EWSR1-CREB1/ATF1 fusion in hES cells recapitulates the core gene signatures, respectively, of angiomatoid fibrous histiocytoma (AFH) and gastrointestinal clear cell sarcoma (GI-CCS), although both fusions lead to cell lethality. Conversely, expression of the fusions in hES cells differentiated to mesenchymal progenitors is compatible with prolonged viability while maintaining the core gene signatures. Moreover, in the context of a mesenchymal lineage, the proliferation of cells expressing the EWSR1-CREB1 fusion is further extended by deletion of the tumor suppressor TP53 . We expect the generation of isogenic lines carrying oncogenic fusions in various cell lineages to expand our general understanding of how those single genetic events drive tumorigenesis while providing valuable resources for drug discovery.
SUMMARYSomatic chromosomal deletions are prevalent in cancer, yet their functional contributions remain ill-defined. Among the most prominent of these events are deletions of chromosome 9p21.3, which disable a cell intrinsic barrier to tumorigenesis by eliminating the CDKN2A/B tumor suppressor genes. However, half of 9p21.3 deletions encompass a cluster of 16 type I interferons (IFNs) whose co-deletions have not been functionally characterized. To dissect how 9p21.3 and other genomic deletions impact cancer, we developed MACHETE (Molecular Alteration of Chromosomes with Engineered Tandem Elements), a genome engineering strategy that enables flexible modeling of megabase-sized deletions. Generation of 9p21.3-syntenic deletions in a mouse model of pancreatic cancer revealed that concomitant loss of Cdkn2a/b and the IFN cluster led to immune evasion and metastasis compared to Cdkn2a/b-only deletions. Mechanistically, IFN co-deletion disrupted type I IFN signaling, altered antigen-presenting cells, and facilitated escape from CD8+ T cell surveillance in a cell extrinsic manner requiring loss of interferon epsilon (Ifne). Our results establish co-deletions of the IFN cluster as a pervasive route to tumor immune evasion and metastasis, revealing how deletions can disable physically linked cell intrinsic and extrinsic tumor suppression. Our study establishes a framework to dissect the functions of genomic deletions in cancer and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.