SummaryPeroxisomes are ubiquitous subcellular organelles, which multiply by growth and division but can also form de novo via the endoplasmic reticulum. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission. Dynamin-like protein (DLP1/Drp1) and its membrane adaptor Fis1 function in the later stages of peroxisome division, whereas the membrane peroxin Pex11p appears to act early in the process. We have discovered that a Pex11p-YFP m fusion protein can be used as a specific tool to further dissect peroxisomal growth and division. Pex11p-YFP m inhibited peroxisomal segmentation and division, but resulted in the formation of pre-peroxisomal membrane structures composed of globular domains and tubular extensions. Peroxisomal matrix and membrane proteins were targeted to distinct regions of the peroxisomal structures. Pex11p-mediated membrane formation was initiated at pre-existing peroxisomes, indicating that growth and division follows a multistep maturation pathway and that formation of mammalian peroxisomes is more complex than simple division of a pre-existing organelle. The implications of these findings on the mechanisms of peroxisome formation and membrane deformation are discussed.
Zymogen granules (ZGs) are specialized storage organelles in the exocrine pancreas, which allow digestive enzyme storage and regulated apical secretion. To understand the function of these important organelles, we are conducting studies to identify and characterize ZG membrane proteins. Small guanosine triphosphatases (GTPases) of the Rab family are key protein components involved in vesicular/granular trafficking and membrane fusion in eukaryotic cells. In this study, we show by morphological studies that Rab8 (Rab8A) localizes to ZGs in acinar cells of the pancreas. We find that Rab8 is present on isolated ZGs from rat pancreas and in the ZG membrane fraction obtained after granule subfractionation. To address a putative role of Rab8 in granule biogenesis, we conducted RNA interference experiments to 'knock down' the expression of Rab8 in pancreatic AR42J cells. Silencing of Rab8 (but not of Rab3) resulted in a decrease in the number of ZGs and in an accumulation of granule marker proteins within the Golgi complex. By contrast, the trafficking of lysosomal and plasma membrane proteins was not affected. These data provide first evidence for a role of Rab8 early on in ZG formation at the Golgi complex and thus, apical trafficking of digestive enzymes in acinar cells of the pancreas.
Okadaic acid, a serine/threonine phosphatase inhibitor, has been shown to inhibit rat pancreatic enzyme secretion by interference with late processes in stimulus-secretion coupling. To further characterize its action, we studied the effect of okadaic acid on secretion of newly synthesized proteins, protein synthesis, and cellular ultrastructure in pancreatic lobules derived from rats stimulated in vivo by feeding the synthetic proteinase inhibitor FOY-305. Okadaic acid completely blocked protein secretion at concentrations that inhibit the Ca2+/calmodulin-dependent protein phosphatase 2b, calcineurin. Protein synthesis was abolished at 10(-6) mol/l and reduced by 60% at 5 x 10(-7) mol/l okadaic acid. Pancreatic lobules exposed to 5 x 10(-7) mol/l okadaic acid for 20 min fully restored their secretory capacity on removal of the drug; whereas, after a preincubation with okadaic acid for > 40 min, protein secretion remained impaired during the recovery period. Electron microscopic examination of pancreatic acinar cells treated with 5 x 10(-7) mol/l okadaic acid revealed a dilated Golgi complex after 15 and 30 min and a subsequent fragmentation of Golgi cisternae into clouds of small uniform vesicles after 60 min. Reassembly of Golgi stacks occurred after a 60-min recovery without okadaic acid. These data indicate that serine/threonine phosphatases play an important role not only in the regulation of pancreatic enzyme synthesis and exocytosis but also are crucial for the maintenance of normal Golgi architecture and function in the exocrine rat pancreas. These effects are probably not exclusively mediated via type 2b calcineurin-like protein phosphatases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.