The transmission electron microscopy (TEM) microstructure of a low-carbon Ti-killed interstitialfree (IF) steel has been examined after simple-shear/simple-shear and uniaxial-tension/simple-shear strain-path changes, in connection with the crystallographic orientation of the grains. The results are discussed in the context of the inter-relation between the microstructure and texture evolutions and their joint influence on the mechanical behavior. A partial disappearance of prestrain microstructures is shown to cause the stagnation of work hardening at earlier stages of reversed loading during Bauschinger simple-shear sequences. Under progressing reversed deformation, a fragmentation of the grains of unstable orientations still slows down the work-hardening rate. A strong localization of plastic flow within microbands following an orthogonal strain-path change is shown to occur within the grains containing well-developed prestrain dislocation boundaries and belonging to certain orientation groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.