Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin–Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin–Crk complex in the collagen-induced cell motility.
Abstract. Changes of cell morphology and the state of differentiation are known to play important roles in embryogenesis as well as in carcinogenesis. Examples of particularly profound changes are the conversions of epithelial to mesenchymal cells; i.e., the dissociation of some or all polygonal, polar epithelial cells and their transformation into elongate, fibroblastoid cells of high motility. As an in vitro model system for such changes in cell morphology, we have used cell cultures of the rat bladder carcinoma-derived cell line NBT-II which, on exposure to inducing medium containing a commercial serum substitute (Ultroser G), show an extensive change in their organization (epithelialmesenchymal transition): the junctions between the epithelial cells are split, the epithelial cell organization is lost, and the resulting individual cells become motile and assume a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy and biochemical protein characterization techniques, we show that this change is accompanied by a redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by a reorganization of the cytokeratin and the actin-fodrin filament systems. Moreover, intermediate-sized filaments of the vimentin type are formed in the fibroblastoid cells. We demonstrate that the modulation of desmosomal proteins, specifically an increase in soluble desmoplakins, is a relatively early event in cell dissociation and in epithelial-mesenchymal transition. In this process, a latent period of 5 h upon addition of inducing medium precedes the removal of these desmosomal components from the plasma membrane. The transition, which is reversible, is dependent on continued protein synthesis and phosphorylation but not on the presence of the inducing medium beyond the initial 2-h period. We discuss the value of this experimental system as a physiologically relevant approach for studying the regulation of the assembly and disassembly of desmosomes and other intercellular adhesion structures, and as a model of the conversion of cells from one state of differentiation into another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.