Progesterone receptors (PR) are expressed throughout the brain. However, their functional significance remains understudied. Here we report a novel role of PR as crucial mediators of neuroprotection using a model of transient middle cerebral artery occlusion and PR knockout mice. Six hours after ischemia, we observed a rapid increase in progesterone and 5α-dihydroprogesterone, the endogenous PR ligands, a process that may be a part of the natural neuroprotective mechanisms. PR deficiency, and even haploinsufficiency, increases the susceptibility of the brain to stroke damage. Within a time window of 24 h, PR-dependent signaling of endogenous brain progesterone limits the extent of tissue damage and the impairment of motor functions. Longer-term improvement requires additional treatment with exogenous progesterone and is also PR dependent. The potent and selective PR agonist Nestorone is also effective. In contrast to progesterone, levels of the neurosteroid allopregnanolone, which modulates γ-aminobutyric acid type A receptors, did not increase after stroke, but its administration protected both wild-type and PR-deficient mice against ischemic damage. These results show that 1) PR are linked to signaling pathways that influence susceptibility to stroke, and 2) PR are direct key targets for both endogenous neuroprotection and for therapeutic strategies after stroke, and they suggest a novel indication for synthetic progestins already validated for contraception. Although allopregnanolone may not be an endogenous neuroprotective agent, its administration protects the brain against ischemic damage by signaling mechanisms not involving PR. Collectively, our data clarify the relative roles of PR and allopregnanolone in neuroprotection after stroke.
After traumatic brain injury, progesterone has important neuroprotective effects in the nervous system. There is better functional outcome and less oedema formation in pseudopregnant rat females (high levels of endogenous progesterone) than in males. In addition to intracellular progesterone receptors, membrane binding sites of the hormone such as 25-Dx may also be involved in neuroprotection. In the present study we investigated the distribution of the membrane-associated progesterone-binding protein 25-Dx in rat brain. Immunohistochemical analysis showed that 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, and ependymal cells of the lateral walls of the third and lateral ventricles. A strong signal was also detected in the meninges. Double immunofluorescence immunolabelling and confocal microscopy showed that 25-Dx is co-expressed with vasopressin in neurones of the paraventricular, supraoptic and retrochiasmatic nuclei. Levels of 25-Dx expression were higher in pseudopregnant females than in males. After traumatic brain injury, 25-Dx expression was up-regulated in neurones and induced in astrocytes, which play an important role in regulating water and ion homeostasis. The expression of 25-Dx in structures involved in CSF production (choroid plexus) and in osmoregulation (circumventricular organs, hypothalamus and meninges), and its up-regulation after brain damage, point to a novel and potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after traumatic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.