Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose-specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X-ray co-crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH-antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X-ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X-ray and NMR experiments the results provide a mechanism for the often-observed enthalpy-entropy compensation of FimH antagonists that plays a role in fine-tuning of the interaction.
Noroviruses attach to their host cells through histo blood group antigens (HBGAs), and compounds that interfere with this interaction are likely to be of therapeutic or diagnostic interest. It is shown that NMR binding studies can simultaneously identify and differentiate the site for binding HBGA ligands and complementary ligands from a large compound library, thereby facilitating the design of potent heterobifunctional ligands. Saturation transfer difference (STD) NMR experiments, spin-lock filtered NMR experiments, and interligand NOE (ILOE) experiments in the presence of virus-like particles (VLPs), identified compounds that bind to the HBGA binding site of human norovirus. Based on these data two multivalent prototype entry-inhibitors against norovirus infection were synthesized. A surface plasmon resonance based inhibition assay showed avidity gains of 1000 and one million fold over a millimolar univalent ligand. This suggests that further rational design of multivalent inhibitors based on our strategy will identify potent entry-inhibitors against norovirus infections.
Edited by Wolfgang Peti For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low-to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design. The authors declare that they have no conflicts of interest with the contents of this article. This article contains Figs. S1-S11, Tables S1-S2, supporting Extended Experimental procedures, and supporting Refs. 1-5. The atomic coordinates and structure factors (code 5MCA) have been deposited in the Protein Data Bank (http://wwpdb.org/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.