Abstract. Caveolae are specialized invaginations of the plasma membrane which have been proposed to play a role in diverse cellular processes such as endocytosis and signal transduction. We have developed an assay to determine the fraction of internal versus plasma membrane caveolae. The GPI-anchored protein, alkaline phosphatase, was clustered in caveolae after antibody-induced crosslinking at low temperature and then, after various treatments, the relative amount of alkaline phosphatase on the cell surface was determined. Using this assay we were able to show a time-and temperature-dependent decrease in cellsurface alkaline phosphatase activity which was dependent on antibody-induced clustering. The decrease in cell surface alkaline phosphatase activity was greatly accelerated by the phosphatase inhibitor, okadaic acid, but not by a protein kinase C activator. Internalization of clustered alkaline phosphatase in the presence or absence of okadaic acid was blocked by cytochalasin D and by the kinase inhibitor staurosporine. Electron microscopy confirmed that okadaic acid induced removal of caveolae from the cell surface. In the presence of hypertonic medium this was followed by the redistribution of groups of caveolae to the center of the cell close to the microtubule-organizing center. This process was reversible, blocked by cytochalasin D, and the centralization of the caveolar clusters was shown to be dependent on an intact microtubule network. Although the exact mechanism of internalization remains unknown, the results show that caveolae are dynamic structures which can be internalized into the cell. This process may be regulated by kinase activity and require an intact actin network.
Congenital dyserythropoietic anemias (CDAs) are phenotypically and genotypically heterogeneous diseases. CDA type II (CDAII) is the most frequent CDA. It is characterized by ineffective erythropoiesis and by the presence of bi- and multinucleated erythroblasts in bone marrow, with nuclei of equal size and DNA content, suggesting a cytokinesis disturbance. Other features of the peripheral red blood cells are protein and lipid dysglycosylation and endoplasmic reticulum double-membrane remnants. Development of other hematopoietic lineages is normal. Individuals with CDAII show progressive splenomegaly, gallstones and iron overload potentially with liver cirrhosis or cardiac failure. Here we show that the gene encoding the secretory COPII component SEC23B is mutated in CDAII. Short hairpin RNA (shRNA)-mediated suppression of SEC23B expression recapitulates the cytokinesis defect. Knockdown of zebrafish sec23b also leads to aberrant erythrocyte development. Our results provide in vivo evidence for SEC23B selectivity in erythroid differentiation and show that SEC23A and SEC23B, although highly related paralogous secretory COPII components, are nonredundant in erythrocyte maturation.
The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.