Recently, we have shown that, in rodent incisors, the crown- and root-analogue dentin (enamel- and cementum-related dentin) show differences in mineralization rates (Beertsen and Niehof, 1986) and composition of the organic matrices (Steinfort et al., 1989). It was the aim of the present study to determine whether these differences were accompanied by differences in the inorganic components. Rat incisors were analyzed by means of hardness measurements, microradiography, and the determination of Ca, Mg, and PO4 content. The outer circumpulpal dentin layer of the enamel-related dentin (ERD) was considerably harder and denser than the comparable layer of the cementum-related dentin (CRD). Concomitantly, a higher Ca and PO4 content was found for the ERD than for the CRD, while the reverse occurred with respect to Mg. From the apical end of the incisor toward the incisal edge, the Ca/PO4 ratio tended to decrease for both ERD and CRD, while the Mg/PO4 ratio increased. All differences appeared to be statistically significant. It is concluded that differences in the non-collagenous organic matrix were accompanied by differences in the inorganic components. More specifically, a relatively high content of highly phosphorylated phosphoproteins (ERD) was associated with a higher Ca and a lower Mg content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.