A classification of fusiform neocortical interneurons (n ؍ 60) was performed with an unsupervised cluster analysis based on the comparison of multiple electrophysiological and molecular parameters studied by patch-clamp and single-cell multiplex reverse transcription-PCR in rat neocortical acute slices. The multiplex reverse transcription-PCR protocol was designed to detect simultaneously the expression of GAD65, GAD67, calbindin, parvalbumin, calretinin, neuropeptide Y, vasoactive intestinal peptide (VIP), somatostatin (SS), cholecystokinin, ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, N-methyl-D-aspartate, and metabotropic glutamate receptor subtypes. Three groups of fusiform interneurons with distinctive features were disclosed by the cluster analysis. The first type of fusiform neuron (n ؍ 12), termed regular spiking nonpyramidal (RSNP)-SS cluster, was characterized by a firing pattern of RSNP cells and by a high occurrence of SS. The second type of fusiform neuron (n ؍ 32), termed RSNP-VIP cluster, predominantly expressed VIP and also showed firing properties of RSNP neurons with accommodation profiles different from those of RSNP-SS cells. Finally, the last type of fusiform neuron (n ؍ 16) contained a majority of irregular spiking-VIPergic neurons. In addition, the analysis of glutamate receptors revealed cell-type-specific expression profiles. This study shows that combinations of multiple independent criteria define distinct neocortical populations of interneurons potentially involved in specific functions. B ecause, in part, of their diversity, the function of neuron subtypes in the physiology of the neocortex is still poorly understood. A better knowledge of the different neuronal populations that compose this heterogeneous brain structure may therefore contribute to elucidating their specific role.Attempts to classify neurons rely on several independent criteria (morphological, physiological, and molecular). In the neocortex, neurons are classified as pyramidal cells or nonpyramidal cells according to their morphology. Pyramidal cells accumulate glutamate and constitute the main class of excitatory projecting neurons (1). In contrast, nonpyramidal cells, also termed interneurons, are mainly inhibitory ␥-aminobutyric acid-ergic neurons with a short axon involved in local circuits (2) and have a large diversity of morphology (3). The expression of biochemical markers has been used to define different classes of nonpyramidal cells. The distribution of three calcium binding proteins, calbindin (CB), parvalbumin (PV), and calretinin (CR), and four neuropeptides, neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin (SS), and cholecystokinin (CCK), defines partially overlapping groups of interneurons (4 -12). In addition to this morphological and molecular diversity, nonpyramidal cells also have a large repertoire of firing behaviors (13-18), such as fast spiking (FS), regular spiking nonpyramidal (RSNP), or irregular spiking (IS).Some types of interneurons have b...