Cyclophilins are a family of proteins that bind the immunosuppressant cyclosporin A, possess peptidyl-prolyl cis-trans isomerase activity, and assist in the folding of proteins. Human cyclophilins A and B are host cell proteins that bind specifically to the HIV-1 Gag polyprotein p55gag in vitro. Here we report that viral particles formed by p55gag, in contrast to particles formed by the Gag polyproteins of other retroviruses, contain significant amounts of cyclophilin A. Sequences in the capsid domain of p55gag are both required and sufficient for the virion-association of cyclophilin A. The association of cyclophilin A with HIV-1 virions was inhibited in a dose-dependent manner by cyclosporin A as well as by SDZ NIM811 ([Melle-4]cyclosporin), a non-immunosuppressive analogue of cyclosporin A. Drug-induced reductions in virion-associated cyclophilin A levels were accompanied by reductions in virion infectivity, indicating that the association is functionally relevant. Moreover, SDZ NIM811 inhibited the replication of HIV-1 but was inactive against SIVMAC, a primate immunodeficiency virus closely related to HIV-1, which does not incorporate cyclophilin A.
Bicyclams, in which the cyclam (1,4,8,11-tetraazacyclotetradecane) moieties are tethered via an aliphatic bridge (i.e., propylene, as in JM2763) are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) (E. De Clercq, N. Yamamoto, R. Pauwels, M. Baba, D. Schols, H. Nakashima, J. Balzarini, Z. Debyser, B. A. Murrer, D. Schwartz, D. Thornton, G. Bridger, S. Fricker, G. Henson, M. Abrams, and D. Picker, Proc. Natl. Acad. Sci. USA 89:5286-5290, 1992). We have now found that the bicyclam JM3100, in which the cyclam moieties are tethered by an aromatic bridge [i.e., phenylenebis(methylene)], inhibits the replication of various HIV-1 and HIV-2 strains in various cell lines at a 50% effective concentration (EC50) of 1 to 10 ng/ml, which is about 100-fold lower than the concentration required for JM2763 to inhibit HIV replication and at least 100,000-fold lower than the cytotoxic concentration (> 500 micrograms/ml). In primary T4 lymphocytes or primary monocytes, JM3100 proved inhibitory to HIV-1(IIIB) and several clinical HIV-1 isolates at an EC50 of less than 1 ng/ml. On the basis of time-of-addition experiments, JM3100 appeared to interact with a viral uncoating event, and this was further corroborated by an uncoating assay in which RNase sensitivity of [5-3H]uridine-labeled virions was monitored. In addition, but possibly mechanistically related, JM3100 blocks formation of infectious particles. JM3100 was also found to interfere directly with virus-induced syncytium formation, albeit at a higher concentration (1 to 2 microgram/ml) than that required for inhibition of viral replication. Following subcutaneous injection of 10 mg of JM3100 per kg of body weight to rabbits, anti-HIV activity was detected in serum corresponding to serum drug levels exceeding for at least 6 h by >100-fold the EC(50) required to inhibit HIV replication in vitro. When combined with either 3'-azido-2',3' -dideoxythymidine or 2',3' -dideoxyinosine, JM3100 achieved a additive inhibition of HIV replication, and when repeatedly subcultivated in the presence of JM3100, the virus remained sensitive to the compound for at least 30 passages (120 days) in cell culture.
(Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50%o inhibitory concentration = 0.011 to 0.057 ,g/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.